A Global Version of the PSU/NCAR Mesoscale Model

Abstract A global version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (PSU–NCAR MM5) is described. The new model employs two polar stereographic projection domains centered on each pole. These domains interact at their equators, thereby eliminating the need for a lateral boundary condition file. This paper describes the method, and contrasts this fully compressible nonhydrostatic Eulerian global model with other global models. There are potential advantages over spherical polar grids in the resolution distribution and the treatment of curvature forces near the poles. The model also selectively damps acoustic modes, which appears to have some benefits in real-data initialization. The split-explicit time steps are different from the semi-implicit schemes used in several global nonhydrostatic models, and this localized scheme avoids the need for global elliptic solvers, making it particularly adept for distributed-memory platforms and the use...

[1]  H. Pan,et al.  Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model , 1996 .

[2]  René Laprise,et al.  The resolution of global spectral models , 1992 .

[3]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part II: Results , 1998 .

[4]  A. White,et al.  Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force , 1995 .

[5]  Roger Daley,et al.  The normal modes of the spherical non‐hydrostatic equations with applications to the filtering of acoustic modes , 1988 .

[6]  Alexander E. MacDonald,et al.  QNH: Design and Test of a Quasi-Nonhydrostatic Model for Mesoscale Weather Prediction , 2000 .

[7]  J. Dudhia A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .

[8]  Todd D. Ringler,et al.  Modeling the Atmospheric General Circulation Using a Spherical Geodesic Grid: A New Class of Dynamical Cores , 2000 .

[9]  Jeffrey S. Scroggs,et al.  A global nonhydrostatic semi-Lagrangian atmospheric model without orography , 1995 .

[10]  R. Treadon,et al.  A Tutorial on Lateral Boundary Conditions as a Basic and Potentially Serious Limitation to Regional Numerical Weather Prediction , 1997 .

[11]  René Laprise,et al.  The Euler Equations of Motion with Hydrostatic Pressure as an Independent Variable , 1992 .

[12]  Jean Côté,et al.  The CMC-MRB Global Environmental Multiscale (GEM) Model. Part III: Nonhydrostatic Formulation , 2002 .

[13]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[14]  G. L. Browning,et al.  A comparison of three numerical methods for solving differential equations on the sphere , 1989 .

[15]  Michael Buchhold,et al.  The Operational Global Icosahedral-Hexagonal Gridpoint Model GME: Description and High-Resolution Tests , 2002 .

[16]  Jian-Hua Qian,et al.  Normal Modes of a Global Nonhydrostatic Atmospheric Model , 2000 .

[17]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[18]  Richard A. Anthes,et al.  Development of Hydrodynamic Models Suitable for Air Pollution and Other Mesometerological Studies , 1978 .

[19]  L. Margolin,et al.  A Class of Nonhydrostatic Global Models. , 2001 .

[20]  Roger Daley The application of non‐linear normal mode initialization to an operational forecast model , 1979 .

[21]  N. A. Phillips,et al.  A Map Projection System Suitable for Large-scale Numerical Weather Prediction , 1957 .

[22]  Piotr K. Smolarkiewicz,et al.  A class of monotone interpolation schemes , 1992 .

[23]  René Laprise,et al.  Predictability of a Nested Limited-Area Model , 2000 .

[24]  Saulo R. M. Barros,et al.  Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver , 1990 .

[25]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .

[26]  G. Grell,et al.  A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) , 1994 .

[27]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation , 1998 .

[28]  Trevor Davies,et al.  An Overview of Numerical Methods for the Next Generation U.K. NWP and Climate Model , 1997 .

[29]  Jimy Dudhia,et al.  Evaluation of Surface Fluxes from MM5 Using Observations , 1995 .

[30]  Harold Ritchie,et al.  Advantages of Spatial Averaging in Semi-implicit Semi-Lagrangian Schemes , 1992 .

[31]  J. Dudhia Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model , 1989 .

[32]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .