Lagrangian Jacobian Motion Planning: A Parametric Approach
暂无分享,去创建一个
[1] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[2] H. Sussmann,et al. A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[3] Krzysztof Tchoń,et al. Lagrangian Jacobian inverse for nonholonomic robotic systems , 2015 .
[4] Miroslaw Galicki,et al. The Planning of Robotic Optimal Motions in the Presence of Obstacles , 1998, Int. J. Robotics Res..
[5] G. Chirikjian,et al. Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .
[6] John T. Wen,et al. Kinematic path planning for robots with holonomic and nonholonomic constraints , 1998 .
[7] K Tchoń,et al. Lagrangian Jacobian motion planning , 2015 .
[8] Y. Chitour. A continuation method for motion-planning problems , 2006 .
[9] Krzysztof Tchon,et al. Parametric and Non-parametric Jacobian Motion Planning for Non-holonomic Robotic Systems , 2015, J. Intell. Robotic Syst..
[10] François Alouges,et al. A motion planning algorithm for the rolling-body problem , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.
[11] T. Ważewski,et al. Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .
[12] Krzysztof Tchoń,et al. Endogenous configuration space approach to mobile manipulators: A derivation and performance assessment of Jacobian inverse kinematics algorithms , 2003 .
[13] Krzysztof Tchon,et al. Jacobian motion planning of nonholonomic robots: The Lagrangian Jacobian algorithm , 2015, 2015 10th International Workshop on Robot Motion and Control (RoMoCo).
[14] Ignacy Duleba,et al. Nonholonomic motion planning based on Newton algorithm with energy optimization , 2003, IEEE Trans. Control. Syst. Technol..
[15] Eduardo D. Sontag,et al. Mathematical control theory: deterministic systems , 1990 .