The Beta2-spline: A Special Case of the Beta-spline Curve and Surface Representation

Simpler equations and computationally more efficient algorithms make the Beta2-spline technique easier to understand and useful to the designer.

[1]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[2]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[4]  R. Goldman Using degenerate Bézier triangles and tetrahedra to subdivide Bézier curves , 1982 .

[5]  G. Nielson SOME PIECEWISE POLYNOMIAL ALTERNATIVES TO SPLINES UNDER TENSION , 1974 .

[6]  B. Barsky The beta-spline: a local representation based on shape parameters and fundamental geometric measures , 1981 .

[7]  Edwin Earl Catmull,et al.  A subdivision algorithm for computer display of curved surfaces. , 1974 .

[8]  Brian A. Barsky,et al.  Local Control of Bias and Tension in Beta-splines , 1983, TOGS.

[9]  J. R. Manning Continuity Conditions for Spline Curves , 1974, Comput. J..

[10]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[11]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[12]  T. Goodman Properties of ?-splines , 1985 .

[13]  J. Lane,et al.  A generalized scan line algorithm for the computer display of parametrically defined surfaces , 1979 .

[14]  B. Barsky Arbitrary Subdivision of Bezier Curves , 1985 .

[15]  T. J. Rivlin Bounds on a polynomial , 1970 .

[16]  R. Riesenfeld,et al.  Bounds on a polynomial , 1981 .

[17]  B. Barsky,et al.  An Adaptive Subdivision Method with Crack Prevention for Rendering Beta-Spline Objects. , 1987 .