Generalized Kuhn-Tucker conditions and duality for continuous nonlinear programming problems

[1]  P. J. Davis,et al.  Introduction to functional analysis , 1958 .

[2]  W. Tyndall A DUALITY THEOREM FOR A CLASS OF CONTINUOUS LINEAR PROGRAMMING PROBLEMS , 1965 .

[3]  N. Levinson,et al.  A class of continuous linear programming problems , 1966 .

[4]  R. Bellman Dynamic programming. , 1957, Science.

[5]  Pravin Varaiya,et al.  Nonlinear Programming in Banach Space , 1967 .

[6]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[7]  M. A. Hanson,et al.  A class of continuous convex programming problems , 1968 .

[8]  Yoshiyuki Sakawa,et al.  Nonlinear programming in Banach spaces , 1969 .

[9]  M. Guignard Generalized Kuhn–Tucker Conditions for Mathematical Programming Problems in a Banach Space , 1969 .

[10]  Richard C. Grinold,et al.  Symmetric Duality for Continuous Linear Programs , 1970 .

[11]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .

[12]  A. M. Geoffrion Duality in Nonlinear Programming: A Simplified Applications-Oriented Development , 1971 .

[13]  M. Nashed Differentiability and Related Properties of Nonlinear Operators: Some Aspects of the Role of Differentials in Nonlinear Functional Analysis , 1971 .

[14]  Murray Schechter,et al.  Duality in continuous linear programming , 1972 .

[15]  D. W. Peterson A REVIEW OF CONSTRAINT QUALIFICATIONS IN FINITE-DIMENSIONAL SPACES* , 1973 .

[16]  M. A. Hanson,et al.  Continuous time programming with nonlinear constraints , 1974 .

[17]  P. C. Das Constrained optimization problems in Banach space , 1975 .

[18]  Jon W. Tolle,et al.  Optimality conditions and constraint qualifications in Banach space , 1975 .

[19]  S. Kurcyusz On the existence and nonexistence of Lagrange multipliers in Banach spaces , 1976 .

[20]  J. B. Hiriart-Urruty,et al.  Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces , 1979, Math. Oper. Res..

[21]  Nicos Christofides,et al.  Combinatorial optimization , 1979 .