FEM-BEM iterative solution of electrostatic problems with floating potential conductors

This paper describes two iterative procedures to solve efficiently the global algebraic systems of equations obtained by applying the hybrid FEM-BEM method to the solution of open-boundary electrostatic problems in the presence of floating potential conductors. In both methods, non-standard boundary elements are used. In the first procedure the conjugate gradient solver is used to solve the FEM equations, whereas the BEM equations are solved by the direct LU solver. In the second method, the GMRES solver is applied to a reduced system virtually available, in which the unknowns are the values of the normal derivatives of the electric potential on the truncation boundary. The proposed methods are also applicable to other kind of electromagnetic problems such as magnetostatic and static current density problems. RÉSUMÉ. Cet article décrit deux procédures itératives pour résoudre efficacement les systèmes globaux d'équations algébriques obtenus en appliquant la méthode FEM-BEM à la solution de problèmes électrostatiques en domaines illimités en présence de conducteurs avec potentiels flottant. Des éléments de frontière non-standard sont utilisés. Dans la première procédure, le solveur du gradient conjugué est utilisé pour résoudre les équations aux éléments finis, tandis que les équations des éléments de frontière sont résolues par le solveur direct avec la décomposition LU. Dans la seconde procédure, le solveur GMRES est appliqué à un système réduit virtuellement disponible, dans lequel les inconnues sont les valeurs nodales de la dérivée normale du potentiel électrique sur la frontière de troncature. Les deux méthodes proposées sont également applicables à d'autres types de problèmes électromagnétiques, tels que des problèmes magnétostatiques et de champ de courant statique.

[1]  T. Preston,et al.  Finite Elements for Electrical Engineers , 1984 .

[2]  J. D'Angelo,et al.  Applications of the hybrid finite element-boundary element method in electromagnetics , 1988 .

[3]  C. Geuzaine,et al.  Fast multipole acceleration of the hybrid finite-element/boundary-element analysis of 3-D eddy-current problems , 2004, IEEE Transactions on Magnetics.

[4]  A. Konrad,et al.  The finite element modeling of conductors and floating potentials , 1996 .

[5]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[6]  Giovanni Aiello,et al.  A Generalized Minimal Residual Acceleration of the Charge Iteration Procedure , 1997 .

[7]  Herbert De Gersem,et al.  Floating potentials in various electromagnetic problems using the finite element method , 1998 .

[8]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[9]  Olaf Steinbach,et al.  Simulation of floating potentials in industrial applications by boundary element methods , 2014 .

[10]  S. Alfonzetti,et al.  A Non-Standard Family of Boundary Elements for the Hybrid FEM-BEM Method , 2009, IEEE Transactions on Magnetics.

[11]  O. Zienkiewicz,et al.  The coupling of the finite element method and boundary solution procedures , 1977 .

[12]  Salvatore Coco,et al.  Finite element iterative solution of skin effect problems in open boundaries , 1996 .

[13]  E. Dilettoso,et al.  An Iterative Solution to FEM-BEM Algebraic Systems for Open-Boundary Electrostatic Problems , 2006, 2006 12th Biennial IEEE Conference on Electromagnetic Field Computation.

[14]  G. Borzi,et al.  An Overview Of The ELFIN Code For FiniteElement Research In Electrical Engineering , 1999 .

[15]  G. Borzì,et al.  GMRES Solution of FEM-BEM Global Systems for Electrostatic Problems Without Voltaged Conductors , 2013, IEEE Transactions on Magnetics.

[16]  Salvatore Coco,et al.  Charge iteration: A procedure for the finite element computation of unbounded electrical fields , 1994 .

[17]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[18]  E. M. Freeman,et al.  A sparse matrix open boundary method for finite element analysis , 1989 .

[19]  S. Alfonzetti,et al.  Efficient Solution of Skin-Effect Problems by Means of the GMRES-Accelerated FEM-BEM Method , 2008, IEEE Transactions on Magnetics.

[20]  Jean-François Remacle,et al.  Transformation methods in computational electromagnetism , 1994 .