A unified discrete framework for intrinsic and extrinsic Dirac operators for geometry processing

Spectral mesh analysis and processing methods, namely ones that utilize eigenvalues and eigenfunctions of linear operators on meshes, have been applied to numerous geometric processing applications. The operator used predominantly in these methods is the Laplace‐Beltrami operator, which has the often‐cited property that it is intrinsic, namely invariant to isometric deformation of the underlying geometry, including rigid transformations. Depending on the application, this can be either an advantage or a drawback. Recent work has proposed the alternative of using the Dirac operator on surfaces for spectral processing. The available versions of the Dirac operator either only focus on the extrinsic version, or introduce a range of mixed operators on a spectrum between fully extrinsic Dirac operator and intrinsic Laplace operator. In this work, we introduce a unified discretization scheme that describes both an extrinsic and intrinsic Dirac operator on meshes, based on their continuous counterparts on smooth manifolds. In this discretization, both operators are very closely related, and preserve their key properties from the smooth case. We showcase various applications of our operators, with improved numerics over prior work.

[1]  Hujun Bao,et al.  Spectral Quadrangulation with Feature Curve Alignment and Element Size Control , 2014, ACM Trans. Graph..

[2]  Bruno Lévy,et al.  Spectral mesh processing , 2009, SIGGRAPH ASIA Courses.

[3]  O. Krötenheerdt Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry , 1993 .

[4]  Tim Hoffmann,et al.  A Discrete Extrinsic and Intrinsic Dirac Operator , 2018, Exp. Math..

[5]  Christian Bär,et al.  The Dirac operator on space forms of positive curvature , 1996 .

[6]  Jiaolong Yang,et al.  Image smoothing via unsupervised learning , 2018, ACM Trans. Graph..

[7]  Leonidas J. Guibas,et al.  Functional characterization of intrinsic and extrinsic geometry , 2017, TOGS.

[8]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[9]  Nicolas Ginoux,et al.  The Dirac Spectrum , 2009 .

[10]  Sehoon Ha,et al.  Iterative Training of Dynamic Skills Inspired by Human Coaching Techniques , 2014, ACM Trans. Graph..

[11]  Raif M. Rustamov Robust Volumetric Shape Descriptor , 2010, 3DOR@Eurographics.

[12]  Maks Ovsjanikov,et al.  Consistent functional cross field design for mesh quadrangulation , 2017, ACM Trans. Graph..

[13]  Keenan Crane,et al.  Stripe patterns on surfaces , 2015, ACM Trans. Graph..

[14]  Jane McGonigal,et al.  Keynote: Jane McGonigal , 2012, ACM Transactions on Graphics.

[15]  Peter Schröder,et al.  Discrete Willmore flow , 2005, SIGGRAPH Courses.

[16]  J. Cnops,et al.  An Introduction to Dirac Operators on Manifolds , 2002 .

[17]  Keenan Crane,et al.  Robust fairing via conformal curvature flow , 2013, ACM Trans. Graph..

[18]  P. Schröder,et al.  Spin transformations of discrete surfaces , 2011, SIGGRAPH 2011.

[19]  Ulrich Pinkall,et al.  Infinitesimal Conformal Deformations of Triangulated Surfaces in Space , 2017, Discrete & Computational Geometry.

[20]  Thomas Friedrich On the Spinor Representation of Surfaces in Euclidean 3-Space. ∗ , 1998 .

[21]  Maks Ovsjanikov,et al.  Discrete Derivatives of Vector Fields on Surfaces -- An Operator Approach , 2015, ACM Trans. Graph..

[22]  H. Seidel,et al.  Pattern-aware Deformation Using Sliding Dockers , 2011, SIGGRAPH 2011.

[23]  Andrew O. Sageman-Furnas,et al.  A discrete parametrized surface theory in R^3 , 2014, 1412.7293.

[24]  Johannes Wallner,et al.  On offsets and curvatures for discrete and semidiscrete surfaces , 2014 .

[25]  Paul C. Leopardi,et al.  The Abstract Hodge-Dirac Operator and Its Stable Discretization , 2014, SIAM J. Numer. Anal..

[26]  Thomas A. Funkhouser,et al.  Biharmonic distance , 2010, TOGS.

[27]  Keenan Crane Conformal Geometry Processing , 2013 .

[28]  Christoph von Tycowicz,et al.  Interactive surface modeling using modal analysis , 2011, TOGS.

[29]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[30]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[31]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[32]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[33]  David Chubelaschwili,et al.  Variational formulas for immersions into 3-manifolds , 2016 .

[34]  U. Pinkall,et al.  BONNET PAIRS AND ISOTHERMIC SURFACES , 1996, dg-ga/9610006.

[35]  Maks Ovsjanikov,et al.  An Operator Approach to Tangent Vector Field Processing , 2013, SGP '13.

[36]  Keenan Crane,et al.  A Dirac Operator for Extrinsic Shape Analysis , 2017, Comput. Graph. Forum.

[37]  Michael Atiyah,et al.  The index of elliptic operators on compact manifolds , 1963 .

[38]  Peter Schröder,et al.  Shape from metric , 2018, ACM Trans. Graph..

[39]  U. Pinkall,et al.  Quaternions, Spinors, and Surfaces , 2002 .

[40]  Marc Alexa,et al.  Eurographics Symposium on Geometry Processing 2015 Perfect Laplacians for Polygon Meshes , 2022 .

[41]  Tamal K. Dey,et al.  Convergence, stability, and discrete approximation of Laplace spectra , 2010, SODA '10.

[42]  Christian Bär,et al.  Extrinsic Bounds for Eigenvalues of the Dirac Operator , 1998, math/9805064.

[43]  Giampiero Esposito Dirac Operator and Spectral Geometry , 1997 .

[44]  Hans-Peter Seidel,et al.  Real-time lens blur effects and focus control , 2010, SIGGRAPH 2010.

[45]  Peter Schröder,et al.  Close-to-conformal deformations of volumes , 2015, ACM Trans. Graph..

[46]  Hans-Peter Seidel,et al.  Design and volume optimization of space structures , 2017, ACM Trans. Graph..

[47]  Ulrich Pinkall,et al.  Regular homotopy classes of immersed surfaces , 1985 .