Comparison between Local Ensemble Transform Kalman Filter and PSAS in the NASA finite volume GCM

Abstract. This paper compares the performance of the Local Ensemble Transform Kalman Filter (LETKF) with the Physical-Space Statistical Analysis System (PSAS) under a perfect model scenario. PSAS is a 3D-Var assimilation system used operationally in the Goddard Earth Observing System Data Assimilation System (GEOS-4 DAS). The comparison is carried out using simulated winds and geopotential height observations and the finite volume Global Circulation Model with 72 grid points zonally, 46 grid points meridionally and 55 vertical levels. With forty ensemble members, the LETKF obtains analyses and forecasts with significantly lower RMS errors than those from PSAS, especially over the Southern Hemisphere and oceans. This observed advantage of the LETKF over PSAS is due to the ability of the 40-member ensemble LETKF to capture flow-dependent errors and thus create a good estimate of the evolving background uncertainty. An initial decrease of the forecast errors in the Northern Hemisphere observed in the PSAS but not in the LETKF suggests that the LETKF analysis is more balanced.

[1]  S. Cohn,et al.  Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* , 1998 .

[2]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[3]  Istvan Szunyogh,et al.  A local ensemble transform Kalman filter data assimilation system for the NCEP global model , 2008 .

[4]  Istvan Szunyogh,et al.  Mechanisms for the Development of Locally Low-Dimensional Atmospheric Dynamics , 2005 .

[5]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[6]  M. Buehner,et al.  Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations , 2005 .

[7]  Takemasa Miyoshi,et al.  Local Ensemble Transform Kalman Filtering with an AGCM at a T159/L48 Resolution , 2007 .

[8]  E. Kalnay,et al.  Ensemble Forecasting at NCEP and the Breeding Method , 1997 .

[9]  Junjie Liu,et al.  Applications of the LETKF to adaptive observations, analysis sensitivity, observation impact and the assimilation of moisture , 2007 .

[10]  Takemasa Miyoshi,et al.  ENSEMBLE KALMAN FILTER EXPERIMENTS WITH A PRIMITIVE-EQUATION GLOBAL MODEL , 2005 .

[11]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[12]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[13]  F. Molteni Atmospheric simulations using a GCM with simplified physical parametrizations. I: model climatology and variability in multi-decadal experiments , 2003 .

[14]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .

[15]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[16]  Xue Wei,et al.  Reanalysis without Radiosondes Using Ensemble Data Assimilation , 2004 .

[17]  Jeffrey L. Anderson,et al.  A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .

[18]  E. Kalnay,et al.  C ○ 2007 The Authors , 2006 .

[19]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[20]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[21]  Istvan Szunyogh,et al.  Assimilating non-local observations with a local ensemble Kalman filter , 2007 .

[22]  J. Yorke,et al.  Four-dimensional ensemble Kalman filtering , 2004 .

[23]  Dick Dee,et al.  On the choice of variable for atmospheric moisture analysis , 2022 .

[24]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[25]  Istvan Szunyogh,et al.  Assessing Predictability with a Local Ensemble Kalman Filter , 2007 .

[26]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[27]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[28]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[29]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[30]  E. Kalnay,et al.  Four-dimensional ensemble Kalman filtering , 2004 .

[31]  D. Dee On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation , 1995 .

[32]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[33]  John Harlim,et al.  Convex error growth patterns in a global weather model. , 2005, Physical review letters.

[34]  Istvan Szunyogh,et al.  Assessing a local ensemble Kalman filter: Perfect model experiments with the NCEP global model , 2004 .

[35]  R. Daley Atmospheric Data Analysis , 1991 .

[36]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[37]  Thomas M. Hamill,et al.  Ensemble Data Assimilation with the NCEP Global Forecast System , 2008 .

[38]  B R Hunt,et al.  Local low dimensionality of atmospheric dynamics. , 2001, Physical review letters.

[39]  Istvan Szunyogh,et al.  Exploiting Local Low Dimensionality of the Atmospheric Dynamics for Efficient Ensemble Kalman Filtering , 2002 .