CMOS op-amp sizing using a geometric programming formulation

The problem of CMOS op-amp circuit sizing is addressed here. Given a circuit and its performance specifications, the goal is to automatically determine the device sizes in order to meet the given performance specifications while minimizing a cost function, such as a weighted sum of the active area and power dissipation. The approach is based on the observation that the first order behavior of a MOS transistor in the saturation region is such that the cost and the constraint functions for this optimization problem can be modeled as posynomial in the design variables. The problem is then solved efficiently as a convex optimization problem. Second order effects are then handled by formulating the problem as one of solving a sequence of convex programs. Numerical experiments show that the solutions to the sequence of convex programs converge to the same design point for widely varying initial guesses. This strongly suggests that the approach is capable of determining the globally optimal solution to the problem. Accuracy of performance prediction in the sizing program (implemented in MATLAB) is maintained by using a newly proposed MOS transistor model and verified against detailed SPICE simulation.

[1]  Phillip E Allen,et al.  CMOS Analog Circuit Design , 1987 .

[2]  Alberto L. Sangiovanni-Vincentelli,et al.  DELIGHT.SPICE: an optimization-based system for the design of integrated circuits , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Rob A. Rutenbar,et al.  Synthesis of high-performance analog circuits in ASTRX/OBLX , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  Michael Smith,et al.  Cell libraries and assembly tools for analog/digital CMOS and BiCMOS application-specific integrated circuit design , 1989 .

[5]  Ieee Circuits,et al.  IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems information for authors , 2018, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[6]  G. Box,et al.  Emperical model-building and response surfaces / George E.P. Box, Norman R. Draper , 1987 .

[7]  Rob A. Rutenbar,et al.  ANACONDA: robust synthesis of analog circuits via stochastic pattern search , 1999, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327).

[8]  Pradip Mandal,et al.  A new approach for CMOS op-amp synthesis , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[9]  Rob A. Rutenbar,et al.  Integer programming based topology selection of cell-level analog circuits , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  Christofer Toumazou,et al.  Analog IC design automation. I. Automated circuit generation: new concepts and methods , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  Sung-Mo Kang,et al.  An exact solution to the transistor sizing problem for CMOS circuits using convex optimization , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  P.R. Gray,et al.  OPASYN: a compiler for CMOS operational amplifiers , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[13]  Hidetoshi Onodera,et al.  Operational-amplifier compilation with performance optimization , 1990 .

[14]  Stephen P. Boyd,et al.  Automated design of folded-cascode op-amps with sensitivity analysis , 1998, 1998 IEEE International Conference on Electronics, Circuits and Systems. Surfing the Waves of Science and Technology (Cat. No.98EX196).

[15]  Willy Sansen,et al.  Analog Circuit Design Optimization based on Symbolic Simulation and Simulated Annealing , 1989, ESSCIRC '89: Proceedings of the 15th European Solid-State Circuits Conference.

[16]  Stephen P. Boyd,et al.  Design and optimization of LC oscillators , 1999, 1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051).

[17]  Pradip Mandal,et al.  Macromodeling of the A.C. characteristics of CMOS Op-amps , 1993, ICCAD.

[18]  Stephen P. Boyd,et al.  Optimization of inductor circuits via geometric programming , 1999, DAC '99.

[19]  Fathey M. El-Turky,et al.  BLADES: an artificial intelligence approach to analog circuit design , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[20]  Rob A. Rutenbar,et al.  OASYS: a framework for analog circuit synthesis , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  C. Meixenberger,et al.  Towards an analog system design environment , 1989 .

[22]  Stephen P. Boyd,et al.  GPCAD: a tool for CMOS op-amp synthesis , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[23]  A.S. Sedra,et al.  Analog MOS integrated circuits for signal processing , 1987, Proceedings of the IEEE.

[24]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .

[25]  Rob A. Rutenbar,et al.  Synthesis tools for mixed-signal ICs: progress on frontend and backend strategies , 1996, DAC '96.

[26]  Krzysztof Wawryn An Artificial Intelligence Approach to Analog Circuit Design , 1991, J. Circuits Syst. Comput..

[27]  G. Box,et al.  Empirical Model-Building and Response Surfaces. , 1990 .

[28]  Rob A. Rutenbar,et al.  OPASYN: A Compliler for CMOS Operational Amplifiers , 2002 .

[29]  James E. Campbell,et al.  An Approach to Sensitivity Analysis of Computer Models: Part I—Introduction, Input Variable Selection and Preliminary Variable Assessment , 1981 .

[30]  Georges Gielen,et al.  ISAAC: a symbolic simulator for analog integrated circuits , 1989 .

[31]  Sani R. Nassif,et al.  The center design optimization system , 1989, AT&T Technical Journal.

[32]  Rob A. Rutenbar,et al.  MAELSTROM: efficient simulation-based synthesis for custom analog cells , 1999, DAC '99.

[33]  Clarence Zener,et al.  Geometric Programming : Theory and Application , 1967 .

[34]  John P. Fishburn,et al.  TILOS: A posynomial programming approach to transistor sizing , 2003, ICCAD 2003.

[35]  Francisco V. Fernández,et al.  A Statistical Optimization-based Approach For Automated Sizing Of Analog Cells , 1994, IEEE/ACM International Conference on Computer-Aided Design.

[36]  Eric A. Vittoz,et al.  IDAC: an interactive design tool for analog CMOS circuits , 1987 .

[37]  David J. Allstot,et al.  Sizing of cell-level analog circuits using constrained optimization techniques , 1993 .