FRET monitoring of a nonribosomal peptide synthetase.

[1]  Louise K. Charkoudian,et al.  New Structural Data Reveal the Motion of Carrier Proteins in Nonribosomal Peptide Synthesis , 2016, Angewandte Chemie.

[2]  M. Cryle,et al.  Online Pyrophosphate Assay for Analyzing Adenylation Domains of Nonribosomal Peptide Synthetases , 2016, Chembiochem : a European journal of chemical biology.

[3]  M. Marahiel A structural model for multimodular NRPS assembly lines. , 2016, Natural product reports.

[4]  T. Martin Schmeing,et al.  Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase , 2016, Nature.

[5]  Georgios Skiniotis,et al.  Structures of Two Distinct Conformations of holo-Nonribosomal Peptide Synthetases , 2015, Nature.

[6]  D. Frueh,et al.  Solution Structure of a Nonribosomal Peptide Synthetase Carrier Protein Loaded with Its Substrate Reveals Transient, Well-Defined Contacts. , 2015, Journal of the American Chemical Society.

[7]  Kira J Weissman,et al.  The structural biology of biosynthetic megaenzymes. , 2015, Nature chemical biology.

[8]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[9]  H. Mootz,et al.  Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases. , 2014, Biochemistry.

[10]  Georgios Skiniotis,et al.  Structure of a modular polyketide synthase , 2014, Nature.

[11]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing , 2012, J. Chem. Inf. Model..

[12]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges , 2012, J. Chem. Inf. Model..

[13]  P. Rizkallah,et al.  Crystal Structure of Enhanced Green Fluorescent Protein to 1.35 Å Resolution Reveals Alternative Conformations for Glu222 , 2012, PloS one.

[14]  M. Burkart,et al.  Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. , 2012, Natural product reports.

[15]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[16]  C. Aldrich,et al.  Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. , 2012, Biochemistry.

[17]  C. Aldrich,et al.  Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. , 2012, Chemistry & biology.

[18]  B. Branchini,et al.  Bioluminescence is produced from a trapped firefly luciferase conformation predicted by the domain alternation mechanism. , 2011, Journal of the American Chemical Society.

[19]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[20]  H. Mootz,et al.  Biochemical evidence for conformational changes in the cross‐talk between adenylation and peptidyl‐carrier protein domains of nonribosomal peptide synthetases , 2010, The FEBS journal.

[21]  A. Gulick Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. , 2009, ACS chemical biology.

[22]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[23]  C. Walsh,et al.  Structural insights into nonribosomal peptide enzymatic assembly lines. , 2009, Natural product reports.

[24]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[25]  F. von Delft,et al.  Structural snapshots for the conformation-dependent catalysis by human medium-chain acyl-coenzyme A synthetase ACSM2A. , 2009, Journal of molecular biology.

[26]  Xuefeng Lu,et al.  The mechanism of domain alternation in the acyl-adenylate forming ligase superfamily member 4-chlorobenzoate: coenzyme A ligase. , 2009, Biochemistry.

[27]  M. Marahiel,et al.  Crystal Structure of DltA , 2008, Journal of Biological Chemistry.

[28]  C. Walsh,et al.  Dynamic thiolation–thioesterase structure of a non-ribosomal peptide synthetase , 2008, Nature.

[29]  R. Wu,et al.  Mechanism of 4-chlorobenzoate:coenzyme a ligase catalysis. , 2008, Biochemistry.

[30]  Lars-Oliver Essen,et al.  Crystal Structure of the Termination Module of a Nonribosomal Peptide Synthetase , 2008, Science.

[31]  R. Wu,et al.  Structural characterization of a 140 degrees domain movement in the two-step reaction catalyzed by 4-chlorobenzoate:CoA ligase. , 2008, Biochemistry.

[32]  S. Bruner,et al.  Rational Manipulation of Carrier‐Domain Geometry in Nonribosomal Peptide Synthetases , 2007, Chembiochem : a European journal of chemical biology.

[33]  M. Marahiel,et al.  The Iterative Gramicidin S Thioesterase Catalyzes Peptide Ligation and Cyclization , 2007, Chemistry & Biology.

[34]  M. Marahiel,et al.  Conformational Switches Modulate Protein Interactions in Peptide Antibiotic Synthetases , 2006, Science.

[35]  N. Ban,et al.  Architecture of mammalian fatty acid synthase , 2006 .

[36]  Timm Maier,et al.  Architecture of Mammalian Fatty Acid Synthase at 4.5 Å Resolution , 2006, Science.

[37]  M. Zimmer,et al.  Mutagenesis evidence that the partial reactions of firefly bioluminescence are catalyzed by different conformations of the luciferase C-terminal domain. , 2005, Biochemistry.

[38]  M. Marahiel,et al.  Aminoacyl Adenylate Substrate Analogues for the Inhibition of Adenylation Domains of Nonribosomal Peptide Synthetases , 2003, Chembiochem : a European journal of chemical biology.

[39]  Charles L. Brooks,et al.  New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations , 2003, J. Comput. Chem..

[40]  M. Marahiel,et al.  Ways of Assembling Complex Natural Products on Modular Nonribosomal Peptide Synthetases , 2002, Chembiochem : a European journal of chemical biology.

[41]  Douglas Magde,et al.  Fluorescence Quantum Yields and Their Relation to Lifetimes of Rhodamine 6G and Fluorescein in Nine Solvents: Improved Absolute Standards for Quantum Yields¶ , 2002, Photochemistry and photobiology.

[42]  A. Horswill,et al.  Characterization of the propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica: residue Lys592 is required for propionyl-AMP synthesis. , 2002, Biochemistry.

[43]  C. Walsh,et al.  Kinetic analysis of three activated phenylalanyl intermediates generated by the initiation module PheATE of gramicidin S synthetase. , 2001, Biochemistry.

[44]  K. Hahn,et al.  Localized Rac activation dynamics visualized in living cells. , 2000, Science.

[45]  M. Marahiel,et al.  Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. , 2000, Biochemistry.

[46]  S. Anderson,et al.  The role of lysine 529, a conserved residue of the acyl-adenylate-forming enzyme superfamily, in firefly luciferase. , 2000, Biochemistry.

[47]  V. Subramaniam,et al.  One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. , 2000, Biophysical journal.

[48]  R. Dieckmann,et al.  Probing the domain structure and ligand-induced conformational changes by limited proteolysis of tyrocidine synthetase 1. , 1999, Journal of molecular biology.

[49]  T. Stachelhaus,et al.  Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. , 1999, Science.

[50]  M. Marahiel,et al.  Biosynthetic systems for nonribosomal peptide antibiotic assembly. , 1997, Current opinion in chemical biology.

[51]  Mohamed A. Marahiel,et al.  Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. , 1997, Chemical reviews.

[52]  P. Brick,et al.  Structural basis for the activation of phenylalanine in the non‐ribosomal biosynthesis of gramicidin S , 1997, The EMBO journal.

[53]  T. Stachelhaus,et al.  Modular Structure of Peptide Synthetases Revealed by Dissection of the Multifunctional Enzyme GrsA (*) , 1995, The Journal of Biological Chemistry.

[54]  John Skilling,et al.  Maximum entropy deconvolution in electrospray mass spectrometry , 1991 .

[55]  M. Mann,et al.  Interpreting mass spectra of multiply charged ions , 1989 .

[56]  P. G. Arnison,et al.  Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. , 2013, Natural product reports.

[57]  Fabio Beltram,et al.  Quantitative FRET Analysis With the E0GFP‐mCherry Fluorescent Protein Pair , 2009, Photochemistry and photobiology.

[58]  R. Tsien,et al.  Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. , 2000, Methods in enzymology.

[59]  M. Marahiel,et al.  A new enzyme superfamily - the phosphopantetheinyl transferases. , 1996, Chemistry & biology.

[60]  R. Clegg Fluorescence resonance energy transfer and nucleic acids. , 1992, Methods in enzymology.