A Global Linear and Local Quadratic Noninterior Continuation Method for Nonlinear Complementarity Problems Based on Chen-Mangasarian Smoothing Functions

A noninterior continuation method is proposed for nonlinear complementarity problems. It improves the noninterior continuation methods recently studied by Burke and Xu [Math. Oper. Res., 23 (1998), pp. 719--734] and Xu [The Global Linear Convergence of an Infeasible Non-Interior Path-following Algorithm for Complementarity Problems with Uniform P-functions, Preprint, Department of Mathematics, University of Washington, Seattle, 1996]; the interior point neighborhood technique is extended to a broader class of smoothing functions introduced by Chen and Mangasarian [Comput. Optim. Appl., 5 (1996), pp. 97--138]. The method is shown to be globally linearly convergent following the methodology established by Burke and Xu. In addition, a local acceleration step is added to the method so that it is also locally quadratically convergent under suitable assumptions.

[1]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[2]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[3]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[4]  Nimrod Megiddo,et al.  Homotopy Continuation Methods for Nonlinear Complementarity Problems , 1991, Math. Oper. Res..

[5]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[6]  G. Isac Complementarity Problems , 1992 .

[7]  Shinji Mizuno,et al.  A General Framework of Continuation Methods for Complementarity Problems , 1993, Math. Oper. Res..

[8]  Patrick T. Harker,et al.  A Noninterior Continuation Method for Quadratic and Linear Programming , 1993, SIAM J. Optim..

[9]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[10]  Bintong Chen,et al.  A Non-Interior-Point Continuation Method for Linear Complementarity Problems , 1993, SIAM J. Matrix Anal. Appl..

[11]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[12]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[13]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[14]  Olvi L. Mangasarian,et al.  Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..

[15]  Patrick T. Harker,et al.  A continuation method for monotone variational inequalities , 1995, Math. Program..

[16]  J. J. Moré,et al.  Smoothing of mixed complementarity problems , 1995 .

[17]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[18]  Stephen J. Wright,et al.  A Superlinear Infeasible-Interior-Point Algorithm for Monotone Complementarity Problems , 1996, Math. Oper. Res..

[19]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[20]  M. Fukushima,et al.  Equivalence of the generalized complementarity problem to differentiable unconstrained minimization , 1996 .

[21]  Xiaojun Chen Superlinear convergence of smoothing quasi-Newton methods for nonsmooth equations , 1997 .

[22]  Patrick T. Harker,et al.  Smooth Approximations to Nonlinear Complementarity Problems , 1997, SIAM J. Optim..

[23]  Christian Kanzow,et al.  A new approach to continuation methods for complementarity problems with uniform P-functions , 1997, Oper. Res. Lett..

[24]  Paul Tseng,et al.  An Infeasible Path-Following Method for Monotone Complementarity Problems , 1997, SIAM J. Optim..

[25]  Xiaojun Chen,et al.  Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..

[26]  James V. Burke,et al.  The Global Linear Convergence of a Noninterior Path-Following Algorithm for Linear Complementarity Problems , 1998, Math. Oper. Res..

[27]  Christian Kanzow,et al.  A continuation method for (strongly) monotone variational inequalities , 1998, Math. Program..

[28]  Masao Fukushima,et al.  A Globally Convergent Sequential Quadratic Programming Algorithm for Mathematical Programs with Linear Complementarity Constraints , 1998, Comput. Optim. Appl..

[29]  Y. Ye,et al.  On Homotopy-Smoothing Methods for Variational Inequalities , 1999 .

[30]  K. G. Murty,et al.  Complementarity problems , 2000 .

[31]  Song Xu,et al.  The global linear convergence of an infeasible non-interior path-following algorithm for complementarity problems with uniform P-functions , 2000, Math. Program..