The optokinetic response in zebrafish and its applications.

The optokinetic response (OKR) is a stereotyped eye movement in response to movement in he surround. The OKR serves to stabilize the visual image on the retina, and allows for high resolution vision. Due to its high selection value, all vertebrates display this basic behavior. Here, we review the properties of the OKR with a focus on the zebrafish, including methodological aspects of measuring eye movements in small larvae. The genetic amenabilities of the zebrafish model permit the use of this reflexive behavior in genetic screens. Such approaches have led to the isolation of mutant strains with specific defects in the visual pathway. In addition to the use of the OKR as a screening assay, mutations with characteristic abnormalities in the execution of this behavior will enable the analysis of sensory-motor control in great detail. A case in point is the belladonna mutation, where an axonal misrouting effect at the optic chiasm leads to a reversed OKR with a number of interesting properties.

[1]  John S Stahl,et al.  Using eye movements to assess brain function in mice , 2004, Vision Research.

[2]  C. I. De Zeeuw,et al.  The dynamic characteristics of the mouse horizontal vestibulo-ocular and optokinetic response , 2001, Brain Research.

[3]  K. Hoffmann,et al.  Optokinetic reflex in squirrel monkeys after long‐term monocular deprivation , 1998, The European journal of neuroscience.

[4]  U. Ilg Slow eye movements , 1997, Progress in Neurobiology.

[5]  B. J. M. Hess,et al.  Horizontal optokinetic ocular nystagmus in the pigmented rat , 1985, Neuroscience.

[6]  F. A. Miles,et al.  Long-term adaptive changes in primate vestibuloocular reflex. II. Electrophysiological observations on semicircular canal primary afferents. , 1980, Journal of neurophysiology.

[7]  J. Culverwell,et al.  Making the connection: retinal axon guidance in the zebrafish. , 2002, Seminars in cell & developmental biology.

[8]  K. Hoffmann,et al.  Visual direction-selective neurons in the pretectum of the rainbow trout , 2002, Brain Research Bulletin.

[9]  C. W. Oyster,et al.  Direction-selective retinal ganglion cells and control of optokinetic nystagmus in the rabbit. , 1972, Vision research.

[10]  Tadashi Kawasaki,et al.  Role of the nucleus of the optic tract in monkeys in relation to optokinetic nystagmus , 1986, Brain Research.

[11]  H. Seung,et al.  In vivo intracellular recording and perturbation of persistent activity in a neural integrator , 2001, Nature Neuroscience.

[12]  N. Wioland,et al.  Involvement of GABAergic mechanisms in the optokinetic nystagmus of the frog , 1983, Behavioural Brain Research.

[13]  N. Barmack,et al.  Optokinetic and Vestibular Stimulation Determines the Spatial Orientation of Negative Optokinetic Afternystagmus in the Rabbit , 1999, The Journal of Neuroscience.

[14]  Stephan C F Neuhauss,et al.  Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response. , 2005, Investigative ophthalmology & visual science.

[15]  R. Yee,et al.  Optokinetic asymmetry in patients with maldeveloped foveas , 1980, Brain Research.

[16]  Herwig Baier,et al.  Visuomotor Behaviors in Larval Zebrafish after GFP-Guided Laser Ablation of the Optic Tectum , 2003, The Journal of Neuroscience.

[17]  J. Dowling,et al.  A New Form of Inherited Red-Blindness Identified in Zebrafish , 1997, The Journal of Neuroscience.

[18]  A. Fuchs,et al.  Discharge patterns of neurons in the pretectal nucleus of the optic tract (NOT) in the behaving primate. , 1990, Journal of neurophysiology.

[19]  B. J. Winterson,et al.  Post-rotatory nystagmus and optokinetic after-nystagmus in the rabbit linear rather than exponential decay , 2004, Experimental Brain Research.

[20]  J. N. Kay,et al.  Retinal Ganglion Cell Genesis Requires lakritz, a Zebrafish atonal Homolog , 2001, Neuron.

[21]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[22]  U Büttner,et al.  Three-dimensional eye position and slow phase velocity in humans with downbeat nystagmus. , 2003, Journal of neurophysiology.

[23]  H. Baier,et al.  Genetic dissection of the retinotectal projection. , 1996, Development.

[24]  G. Horridge Position of Onset of Fast Phase in Optokinetic Nystagmus , 1967, Nature.

[25]  H. Collewijn,et al.  Conjugate and disjunctive optokinetic eye movements in the rabbit, evoked by rotatory and translatory motion , 2004, Pflügers Archiv.

[26]  E. L. Keller,et al.  Gain of the vestibulo-ocular reflex in monkey at high rotational frequencies , 1978, Vision Research.

[27]  F. Lui,et al.  The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. , 2006, Progress in brain research.

[28]  D. Robinson The mechanics of human saccadic eye movement , 1964, The Journal of physiology.

[29]  A. Fuchs,et al.  Saccadic, smooth pursuit, and optokinetic eye movements of the trained cat. , 1978, The Journal of physiology.

[30]  Jianliang Tong,et al.  Alternating optokinetic nystagmus (OKN) induced by intermittent display of stationary gratings , 2003, Experimental Brain Research.

[31]  Peter Rombough,et al.  Gills are needed for ionoregulation before they are needed for O(2) uptake in developing zebrafish, Danio rerio. , 2002, The Journal of experimental biology.

[32]  T. Fukuda The unidirectionality of the labyrinthine reflex in relation to the unidirectionality of the optokinetic reflex. , 1959, Acta oto-laryngologica.

[33]  L. Dell’Osso,et al.  Congenital nystagmus: hypotheses for its genesis and complex waveforms within a behavioral ocular motor system model. , 2004, Journal of vision.

[34]  C. Harris,et al.  A Developmental Model of Infantile Nystagmus , 2006, Seminars in ophthalmology.

[35]  L R Young,et al.  Eye-movement measurement techniques. , 1975, The American psychologist.

[36]  C Salas,et al.  A method for measuring eye movements using Hall-effect devices , 1999, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[37]  R. Baker,et al.  Discharge characteristics of medial rectus and abducens motoneurons in the goldfish. , 1991, Journal of neurophysiology.

[38]  N. Bonaventure,et al.  Abolition of monocular optokinetic nystagmus directional asymmetry after unilateral visual deprivation in adult vertebrates: involvement of the GABAergic mechanism. , 1990, Brain research. Developmental brain research.

[39]  José M Delgado-Garcı́a,et al.  Why move the eyes if we can move the head? , 2000, Brain Research Bulletin.

[40]  M. Dawson,et al.  Temporal frequency and velocity-like tuning in the pigeon accessory optic system. , 2003, Journal of neurophysiology.

[41]  H. Gioanni,et al.  Optokinetic nystagmus in the pigeon (Columba livia) II. Role of the pretectal nucleus of the accessory optic system (AOS) , 2004, Experimental Brain Research.

[42]  M Dieterich,et al.  Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. , 1998, Brain : a journal of neurology.

[43]  W. Precht,et al.  Functional organization of the mechanisms subserving the optokinetic nystagmus in the cat , 1981, Neuroscience.

[44]  S. Easter,et al.  Pursuit eye movements in goldfish (Carassius auratus). , 1972, Vision research.

[45]  M. Burrows,et al.  The Onset of the Fast Phase in the Optokinetic Response of the Crab, Carcinus , 1968 .

[46]  G. Vezina,et al.  Isolated absence of the optic chiasm: a rare cause of congenital nystagmus. , 2007, AJNR. American journal of neuroradiology.

[47]  David W Tank,et al.  Instrumentation for measuring oculomotor performance and plasticity in larval organisms. , 2004, Methods in cell biology.

[48]  D. Robinson,et al.  Optokinetic responses in labyrinthine-defective human beings , 1976, Brain Research.

[49]  H. Collewijn,et al.  Optokinetic reactions in man elicited by localized retinal motion stimuli , 1979, Vision Research.

[50]  S. Highstein,et al.  Neuronal substrates of motor learning in the velocity storage generated during optokinetic stimulation in the squirrel monkey. , 2007, Journal of neurophysiology.

[51]  R. Blanks,et al.  The human accessory optic system , 1988, Brain Research.

[52]  R. Malach,et al.  Analysis of monocular optokinetic nystagmus in normal and visually deprived kittens , 1981, Brain Research.

[53]  J. Malicki,et al.  Genetic analysis of photoreceptor cell development in the zebrafish retina , 2002, Mechanisms of Development.

[54]  Masao Ohmi,et al.  The efficiency of the central and peripheral retina in driving human optokinetic nystagmus , 1984, Vision Research.

[55]  Jeffrey A. Walker,et al.  ESTIMATING VELOCITIES AND ACCELERATIONS OF ANIMAL LOCOMOTION: A SIMULATION EXPERIMENT COMPARING NUMERICAL DIFFERENTIATION ALGORITHMS , 1998 .

[56]  H. Seung,et al.  Anatomy and discharge properties of pre-motor neurons in the goldfish medulla that have eye-position signals during fixations. , 2000, Journal of neurophysiology.

[57]  J. W. Henderson,et al.  An experimental study of optokinetic responses. , 1952, A.M.A. archives of ophthalmology.

[58]  R. Sperry Effect of 180 degree rotation of the retinal field on visuomotor coordination , 1943 .

[59]  J. C. Fox,et al.  OPTIC NYSTAGMUS AND ITS VALUE IN THE LOCALIZATION OF CEREBRAL LESIONS , 1926 .

[60]  J. Montgomery Eye movement dynamics in the dogfish. , 1983, The Journal of experimental biology.

[61]  B. Cohen,et al.  Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after‐nystagmus , 1977, The Journal of physiology.

[62]  H Collewijn,et al.  Vestibulo‐ocular and optokinetic reactions to rotation and their interaction in the rabbit , 1974, The Journal of physiology.

[63]  W. Almers,et al.  Two ribeye Genes in Teleosts: The Role of Ribeye in Ribbon Formation and Bipolar Cell Development , 2005, The Journal of Neuroscience.

[64]  S. Neuhauss Behavioral genetic approaches to visual system development and function in zebrafish. , 2003, Journal of neurobiology.

[65]  M. Barmada,et al.  Congenital motor nystagmus linked to Xq26-q27. , 1999, American journal of human genetics.

[66]  Y. Shinmei,et al.  Effects of a fixation target on torsional optokinetic nystagmus. , 2000, Investigative ophthalmology & visual science.

[67]  S. Easter,et al.  Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio) , 1994, The Journal of comparative neurology.

[68]  S. Easter,et al.  The development of vision in the zebrafish (Danio rerio). , 1996, Developmental biology.

[69]  The effect of central retinal lesions on optokinetic nystagmus in the monkey , 2004, Experimental Brain Research.

[70]  C. C. Wood,et al.  Direction-specific deficits in horizontal optokinetic nystagmus following removal of visual cortex in the cat. , 1973, Brain research.

[71]  K. Hoffmann,et al.  Functional projections from striate cortex and superior temporal sulcus to the nucleus of the optic tract (NOT) and dorsal terminal nucleus of the accessory optic tract (DTN) of macaque monkeys , 1991, The Journal of comparative neurology.

[72]  Frederick A. Miles,et al.  VESTIBULO-OCULAR REFLEX: A NEW HYPOTHESIS+ , 1981 .

[73]  The Optokinetic Responses of the Mysid Shrimp Praunus Flexuosus , 1975 .

[74]  R. Bárány Die Untersuchung der reflektorischen vestibulären und optischen Augenbewegungen und ihre Bedeutung für die topische Diagnostik der Augenmuskellähmungen , 1907 .

[75]  O. Grüsser,et al.  Sigma-optokinetic nystagmus in squirrel monkeys elicited by stationary stripe patterns illuminated by regular and random-interval flash sequences , 1999, Experimental Brain Research.

[76]  S. Easter The time course of saccadic eye movements in goldfish , 1975, Vision Research.

[77]  J. Büttner-Ennever,et al.  Pretectal projections to the oculomotor complex of the monkey and their role in eye movements , 1996, The Journal of comparative neurology.

[78]  G. L. Walls The evolutionary history of eye movements , 1962 .

[79]  H. Baier,et al.  Zebrafish mutations affecting retinotectal axon pathfinding. , 1996, Development.

[80]  Robert W. Williams,et al.  Target recognition and visual maps in the thalamus of achiasmatic dogs , 1994, Nature.

[81]  J. Schmidt,et al.  The paths and destinations of the induced ipsilateral retinal projection in goldfish. , 1978, Journal of embryology and experimental morphology.

[82]  Robert W. Williams,et al.  Analysis of the retinas and optic nerves of achiasmatic belgian sheepdogs , 1995, The Journal of comparative neurology.

[83]  F. Gault,et al.  Monocular and binocular control of horizontal optokinetic nystagmus in cats and rabbits. , 1969, Journal of comparative and physiological psychology.

[84]  Herwig Baier,et al.  Of lasers, mutants, and see-through brains: functional neuroanatomy in zebrafish. , 2004, Journal of neurobiology.

[85]  T. Anastasio,et al.  The horizontal optokinetic response of the goldfish. , 1997, Brain, behavior and evolution.

[86]  R. Held,et al.  The postnatal development of monocular optokinetic nystagmus in infants , 1982, Vision Research.

[87]  W. Becker,et al.  Gaze Stabilization by Optokinetic Reflex (OKR) and Vestibulo-ocular Reflex (VOR) During Active Head Rotation in Man , 1997, Vision Research.

[88]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[89]  William A. Harris,et al.  Genetic Disorders of Vision Revealed by a Behavioral Screen of 400 Essential Loci in Zebrafish , 1999, The Journal of Neuroscience.

[90]  Dt. Clark Visual responses in developing zebrafish (Brachydanio rerio) , 1982 .

[91]  J. N. Kay,et al.  Forward Genetic Analysis of Visual Behavior in Zebrafish , 2005, PLoS genetics.

[92]  F. Proudlock,et al.  Look and Stare Optokinetic Nystagmus in Healthy Subjects and in Patients with No Measurable Binocularity. A Prospective Study , 2005, Klinische Monatsblatter fur Augenheilkunde.

[93]  P. Calvas,et al.  Variable phenotype related to a novel PAX 6 mutation (IVS4+5G>C) in a family presenting congenital nystagmus and foveal hypoplasia. , 2004, American journal of ophthalmology.

[94]  I Kato,et al.  Retinal ganglion cells related to optokinetic nystagmus in the rat. , 1992, Acta oto-laryngologica.

[95]  Richard V Abadi Mechanisms underlying nystagmus. , 2002, Journal of the Royal Society of Medicine.

[96]  J. Kröller,et al.  Optokinetic eye movements elicited by an apparently moving visual pattern in guinea pigs , 2000, Experimental Brain Research.

[97]  H Collewijn,et al.  Oculomotor areas in the rabbits midbrain and pretectum. , 1975, Journal of neurobiology.

[98]  D. Teller,et al.  Infant eye movement asymmetries: Temporal-nasal asymmetry is reversed at isoluminance in 2-month-olds , 1995, Vision Research.

[99]  F. Sengpiel,et al.  Visual response properties and afferents of nucleus of the optic tract in the ferret , 2004, Experimental Brain Research.

[100]  K. Kirschfeld,et al.  The role of background movement in goldfish vision , 2000, Journal of Comparative Physiology A.

[101]  S. Schmid,et al.  Analysis of the Activity-Deprived Zebrafish Mutantmacho Reveals an Essential Requirement of Neuronal Activity for the Development of a Fine-Grained Visuotopic Map , 2001, The Journal of Neuroscience.

[102]  C Blakemore,et al.  Co‐ordination of head and eyes in the gaze changing behaviour of cats , 1980, The Journal of physiology.

[103]  P. De Camilli,et al.  The Zebrafish nrc Mutant Reveals a Role for the Polyphosphoinositide Phosphatase Synaptojanin 1 in Cone Photoreceptor Ribbon Anchoring , 2004, The Journal of Neuroscience.

[104]  J B Hurley,et al.  A behavioral screen for isolating zebrafish mutants with visual system defects. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[105]  M. Ohmi,et al.  Directional preponderance in human optokinetic nystagmus , 2004, Experimental Brain Research.

[106]  Jens M. Rick,et al.  belladonna/(lhx2) is required for neural patterning and midline axon guidance in the zebrafish forebrain , 2006, Development.

[107]  M. B. Bender,et al.  Optokinetic afternystagmus in the monkey. , 1956, Electroencephalography and clinical neurophysiology.

[108]  Yanning H. Han,et al.  Vertical optokinetic nystagmus and saccades in normal human subjects. , 2003, Investigative ophthalmology & visual science.

[109]  Han Collewijn,et al.  Sensory control of optokinetic nystagmus in the rabbit , 1980, Trends in Neurosciences.

[110]  H Sebastian Seung,et al.  Plasticity and tuning by visual feedback of the stability of a neural integrator. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[111]  P H Ward,et al.  Experimental studies on optokinetic nystagmus. II. Normal humans. , 1967, Acta oto-laryngologica.

[112]  S. Easter,et al.  The role of the optic tectum in various visually mediated behaviors of goldfish , 1977, Brain Research.

[113]  F. Lui,et al.  Pattern of striate cortical projections to the pretectal complex in the guinea pig , 1994, The Journal of comparative neurology.

[114]  D. Bremer,et al.  Contrast sensitivity of optokinetic nystagmus , 1991, Vision Research.

[115]  K. Hoffmann,et al.  Development of the Optokinetic Response in Macaques , 2003, Annals of the New York Academy of Sciences.

[116]  J. Bouyer,et al.  Optokinetic nystagmus in the pigeon (Columba livia) , 1981, Experimental Brain Research.

[117]  Shih-Chii Liu,et al.  Oculomotor Instabilities in Zebrafish Mutant belladonna: A Behavioral Model for Congenital Nystagmus Caused by Axonal Misrouting , 2006, The Journal of Neuroscience.

[118]  W. Precht,et al.  An electrophysiological study of pathways mediating optokinetic responses to the vestibular nucleus in the rat , 2004, Experimental Brain Research.

[119]  Michael R. Taylor,et al.  The Zebrafish pob Gene Encodes a Novel Protein Required for Survival of Red Cone Photoreceptor Cells Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession no. AY745978. , 2005, Genetics.

[120]  Roger W. Sperry,et al.  RESTORATION OF VISION AFTER CROSSING OF OPTIC NERVES AND AFTER CONTRALATERAL TRANSPLANTATION OF EYE , 1945 .

[121]  L. Optican,et al.  Head shaking and vestibulo-ocular reflex in congenital nystagmus. , 1985, Investigative ophthalmology & visual science.

[122]  M. Gresty,et al.  HEAD NODDING ASSOCIATED WITH IDIOPATHIC CHILDHOOD NYSTAGMUS , 1981, Annals of the New York Academy of Sciences.

[123]  D. W. Tank,et al.  Spontaneous eye movements in goldfish: oculomotor integrator performance, plasticity, and dependence on visual feedback , 2004, Vision Research.

[124]  R. Hertle,et al.  Clinical, radiographic, and electrophysiologic findings in patients with achiasma or hypochiasma , 2001 .

[125]  F. Bergmann,et al.  Optokinetic nystagmus and its interaction with central nystagmus , 1963, The Journal of physiology.

[126]  U. Büttner,et al.  The influence of age on optokinetic nystagmus , 2004, European archives of psychiatry and neurological sciences.

[127]  N. H. Barmack,et al.  A comparison of the horizontal and vertical optokinetic reflexes of the rabbit , 1980, Experimental Brain Research.

[128]  M Dieterich,et al.  Cerebellar activation during optokinetic stimulation and saccades , 2000, Neurology.

[129]  G. Wallis,et al.  Reflexive optokinetic nystagmus in younger and older observers under photopic and mesopic viewing conditions. , 2006, Investigative ophthalmology & visual science.

[130]  L. Harris,et al.  Abolition of optokinetic nystagmus in the cat. , 1980, Science.

[131]  B. Cohen,et al.  Efferent pathways of the nucleus of the optic tract in monkey and their role in eye movements , 1996, The Journal of comparative neurology.

[132]  M. Seeliger,et al.  Retinal function and morphology in two zebrafish models of oculo‐renal syndromes , 2003, The European journal of neuroscience.

[133]  K. Hoffmann,et al.  Optokinetic Deficits in Albino Ferrets (Mustela putorius furo): A Behavioral and Electrophysiological Study , 2004, The Journal of Neuroscience.

[134]  M. Nuwer,et al.  Ocular motility anomalies in developmental misdirection of the optic chiasm. , 1992, American journal of ophthalmology.

[135]  Daphne Maurer,et al.  The development of symmetrical OKN in infants: quantification based on OKN acuity for nasalward versus temporalward motion , 2000, Vision Research.

[136]  U Büttner,et al.  Present concepts of oculomotor organization. , 1988, Reviews of oculomotor research.

[137]  H. Collewijn,et al.  Effect of cerebro/cortical and collicular ablations upon the optokinetic reactions in the rabbit , 1971, Documenta Ophthalmologica.

[138]  A. Fuchs Saccadic and smooth pursuit eye movements in the monkey , 1967, The Journal of physiology.

[139]  Michael R. Taylor,et al.  A zebrafish model for pyruvate dehydrogenase deficiency: rescue of neurological dysfunction and embryonic lethality using a ketogenic diet. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[140]  J. Wallman,et al.  Directional asymmetries of optokinetic nystagmus: developmental changes and relation to the accessory optic system and to the vestibular system , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[141]  R. Tusa,et al.  The incidence and waveform characteristics of periodic alternating nystagmus in congenital nystagmus. , 1999, Investigative ophthalmology & visual science.

[142]  David S. Broomhead,et al.  Modelling of congenital nystagmus waveforms produced by saccadic system abnormalities , 2000, Biological Cybernetics.

[143]  K. Hoffmann,et al.  Development of the optokinetic system in macaque monkeys , 1999, Vision Research.

[144]  M. Tsujikawa,et al.  Intraflagellar Transport Genes Are Essential for Differentiation and Survival of Vertebrate Sensory Neurons , 2004, Neuron.

[145]  Akira Muto,et al.  Behavioral screening assays in zebrafish. , 2004, Methods in cell biology.

[146]  Michael B Hoffmann,et al.  Organization of the Visual Cortex in Human Albinism , 2003, The Journal of Neuroscience.

[147]  M. Kawato,et al.  The cerebellum and VOR/OKR learning models , 1992, Trends in Neurosciences.

[148]  M. Jeannerod,et al.  Role of visual experience in the development of optokinetic response in kittens , 2004, Experimental Brain Research.

[149]  Han Collewijn,et al.  Directional asymmetries of human optokinetic nystagmus , 2004, Experimental Brain Research.

[150]  Peter H. Schiller,et al.  The optokinetic response under open and closed loop conditions in the monkey , 2004, Experimental Brain Research.

[151]  Frank Bremmer,et al.  Optokinetic and pursuit system: A case report , 1993, Behavioural Brain Research.

[152]  M Donaghy,et al.  The contrast sensitivity, spatial resolution and velocity tuning of the cat's optokinetic reflex. , 1980, The Journal of physiology.

[153]  T. Kitama,et al.  Difference between horizontal and vertical optokinetic nystagmus in cats at upright position. , 2001, The Japanese journal of physiology.

[154]  E. Tauber,et al.  Optomotor Responses to Monocular Stimulation: Relation to Visual System Organization , 1968, Science.

[155]  A. Fuchs,et al.  Anatomical connections of the primate pretectal nucleus of the optic tract , 1994, The Journal of comparative neurology.

[156]  B. Cohen,et al.  Vertical optokinetic nystagmus and vestibular nystagmus in the monkey: Up-down asymmetry and effects of gravity , 2004, Experimental Brain Research.

[157]  D S Zee,et al.  Effects of occipital lobectomy upon eye movements in primate. , 1987, Journal of neurophysiology.

[158]  Harry J. Wyatt,et al.  Active and passive smooth eye movements: Effects of stimulus size and location , 1985, Vision Research.

[159]  A. Hein,et al.  Optokinetic nystagmus in the ferret: including selected comparisons with the cat , 2004, Experimental Brain Research.

[160]  H. Collewijn,et al.  Vertical and torsional optokinetic eye movements in the rabbit , 2004, Pflügers Archiv.

[161]  G. Birukow Untersuchungen über den optischen Drehnystagmus und über die Sehschärfe des Grasfrosches (Rana temporaria) , 2004, Zeitschrift für Vergleichende Physiologie.

[162]  F Bremmer,et al.  Directional asymmetry of neurons in cortical areas MT and MST projecting to the NOT-DTN in macaques. , 2002, Journal of neurophysiology.

[163]  D A Robinson,et al.  The use of control systems analysis in the neurophysiology of eye movements. , 1981, Annual review of neuroscience.

[164]  T. Pasik,et al.  Optokinetic Nystagmus: An unlearned Response Altered by Section of Chiasma and Corpus Callosum in Monkeys , 1964, Nature.

[165]  N. Daw,et al.  Raising rabbits in a moving visual environment: an attempt to modify directional sensitivity in the retina , 1974, The Journal of physiology.

[166]  P Apkarian,et al.  A Unique Achiasmatic Anomaly Detected in Non‐albinos with Misrouted Retinal‐fugal Projections , 1994, The European journal of neuroscience.

[167]  W. Precht,et al.  Differences in the central organization of gaze stabilizing reflexes between frog and turtle , 1983, Journal of comparative physiology.

[168]  H. Collewijn Optokinetic eye movements in the rabbit: input-output relations. , 1969, Vision research.

[169]  T. Raphan,et al.  VELOCITY STORAGE, NYSTAGMUS, AND VISUAL‐VESTIBULAR INTERACTIONS IN HUMANS * , 1981, Annals of the New York Academy of Sciences.

[170]  D. R MESTRE,et al.  Ocular Responses to Motion Parallax Stimuli: The Role of Perceptual and Attentional Factors , 1997, Vision Research.

[171]  H. Collewijn,et al.  The optokinetic reactions of the rabbit: Relation to the visual streak , 1979, Vision Research.

[172]  Klaus-Peter Hoffmann,et al.  Cortical projections to the nucleus of the optic tract and dorsal terminal nucleus and to the dorsolateral pontine nucleus in macaques: A dual retrograde tracing study , 2002, The Journal of comparative neurology.

[173]  Ernesto Maldonado,et al.  The zebrafish mutant vps18 as a model for vesicle-traffic related hypopigmentation diseases. , 2006, Pigment cell research.

[174]  D. Tank,et al.  Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. , 2004, Journal of neurophysiology.

[175]  U. W. Buettner,et al.  Parietal cortex (2v) neuronal activity in the alert monkey during natural vestibular and optokinetic stimulation , 1978, Brain Research.

[176]  L. Pinto,et al.  Visually evoked eye movements in the mouse (Mus musculus) , 1976, Vision Research.

[177]  M. B. Bender,et al.  Vertical optokinetic nystagmus in the split-brain monkey. , 1971, Experimental neurology.

[178]  Jarema Malicki,et al.  Genetics of photoreceptor development and function in zebrafish. , 2004, The International journal of developmental biology.

[179]  J. Dowling,et al.  Zebrafish retinal mutants , 1998, Vision Research.

[180]  A. Schoppmann Functional and developmental analysis of a visual corticopretectal pathway in the cat: a neuroanatomical and electrophysiological study , 2004, Experimental Brain Research.

[181]  L. Optican,et al.  A hypothetical explanation of congenital nystagmus , 1984, Biological Cybernetics.

[182]  I. Howard,et al.  Visually-induced eye torsion and tilt adaptation. , 1964, Vision research.

[183]  C. de’Sperati,et al.  Vergence compensation during binocularly-and monocularly-evoked horizontal optokinetic nystagmus in the pigmented rat , 1994, Vision Research.

[184]  P. Pasik,et al.  Frequency spectrum of optokinetic nystagmus in the normal monkey. , 1973, Vision research.

[185]  N. Barmack,et al.  Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. , 1985, Journal of neurophysiology.

[186]  R. Baker,et al.  Normal and adapted visuooculomotor reflexes in goldfish. , 1997, Journal of neurophysiology.

[187]  U. McCann,et al.  Motor dynamics encoding in the rostral zone of the cat cerebellar flocculus during vertical optokinetic eye movements , 2000 .

[188]  F A Miles,et al.  Optokinetic response in monkey: underlying mechanisms and their sensitivity to long-term adaptive changes in vestibuloocular reflex. , 1981, Journal of neurophysiology.

[189]  S J Farooq,et al.  Torsional optokinetic nystagmus: normal response characteristics , 2004, British Journal of Ophthalmology.

[190]  H. Spekreijse,et al.  The oculomotor behaviour of human albinos. , 1985, Brain : a journal of neurology.

[191]  A. Straube,et al.  Visually induced motion perception and visual control of postural sway in congenital nystagmus , 1997, Behavioural Brain Research.

[192]  M. Land Motion and vision: why animals move their eyes , 1999, Journal of Comparative Physiology A.

[193]  D. Tillitt,et al.  Ontogenetic improvement of visual function in the medaka Oryzias latipes based on an optomotor testing system for larval and adult fish , 2002, Animal Behaviour.

[194]  R. Sperry Neural basis of the spontaneous optokinetic response produced by visual inversion. , 1950, Journal of comparative and physiological psychology.

[195]  A. Fuchs,et al.  Further properties of the human saccadic system: eye movements and correction saccades with and without visual fixation points. , 1969, Vision research.

[196]  K. Hoffmann,et al.  Callosal and superior temporal sulcus contributions to receptive field properties in the macaque monkey's nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract , 1992, The Journal of comparative neurology.

[197]  Prof. Dr. J. Ohm,et al.  Das Verhältnis von Auge und Ohr zu den Augenbewegungen , 1922, Albrecht von Graefes Archiv für Ophthalmologie.

[198]  P. Strata,et al.  Saccadic Eye Movements and Gaze Holding in the Head‐Restrained Pigmented Rat , 1989, The European journal of neuroscience.

[199]  K. Hoffmann,et al.  Directional effect of inactivation of the nucleus of the optic tract on optokinetic nystagmus in the cat , 2001, Vision Research.

[200]  M. Harwood,et al.  Comparison of the main sequence of reflexive saccades and the quick phases of optokinetic nystagmus , 2001, The British journal of ophthalmology.

[201]  G D Paige,et al.  Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. I. Response characteristics in normal animals. , 1983, Journal of neurophysiology.

[202]  Akira Muto,et al.  Retinal network adaptation to bright light requires tyrosinase , 2004, Nature Neuroscience.

[203]  A. Fuchs,et al.  Gaze-stabilizing deficits and latent nystagmus in monkeys with brief, early-onset visual deprivation: eye movement recordings. , 2001, Journal of neurophysiology.

[204]  K. Hoffmann,et al.  Direction specific neurons in the pretectum of the frog (Rana esculenta) , 1980, Journal of comparative physiology.

[205]  S. Sadda,et al.  Optokinetic test to evaluate visual acuity of each eye independently , 2003, Journal of Neuroscience Methods.

[206]  K. Hoffmann,et al.  Visual receptive field properties in kitten pretectal nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract. , 1993, Journal of neurophysiology.

[207]  K. Hoffmann,et al.  OKN‐related neurons in the rat nucleus of the optic tract and dorsal terminal nucleus of the accessory optic system receive a direct cortical input , 1993, The Journal of comparative neurology.

[208]  R. Wurtz,et al.  Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. , 1988, Journal of neurophysiology.

[209]  L. Osso CONGENITAL NYSTAGMUS WAVEFORMS AND FOVEATION STRATEGY , 1975 .

[210]  J. Büttner-Ennever,et al.  Anatomical substrates of oculomotor control , 1997, Current Opinion in Neurobiology.

[211]  N. Marshall,et al.  Independent and conjugate eye movements during optokinesis in teleost fish. , 2002, The Journal of experimental biology.

[212]  O. Rinner,et al.  Knockdown of Cone-Specific Kinase GRK7 in Larval Zebrafish Leads to Impaired Cone Response Recovery and Delayed Dark Adaptation , 2005, Neuron.

[213]  A. Fuchs,et al.  A method for measuring horizontal and vertical eye movement chronically in the monkey. , 1966, Journal of applied physiology.

[214]  M. Goodale,et al.  Eye Movements of Human Albinos , 1984, American Journal of Optometry and Physiological Optics.

[215]  Katrina L Schmid,et al.  Assessment of visual acuity and contrast sensitivity in the chick using an optokinetic nystagmus paradigm , 1998, Vision Research.

[216]  F. Behrens,et al.  An algorithm separating saccadic from nonsaccadic eye movements automatically by use of the acceleration signal , 1992, Vision Research.

[217]  B. Lorenz,et al.  Deletion in the OA1 gene in a family with congenital X linked nystagmus , 2001, The British journal of ophthalmology.

[218]  H. Schwarz,et al.  Duplicated genes with split functions: independent roles of protocadherin15 orthologues in zebrafish hearing and vision , 2005, Development.

[219]  L. Pinto,et al.  Visually evoked eye movements in mouse mutants and inbred strains. A screening report. , 1984, Investigative ophthalmology & visual science.

[220]  C. W. Oyster,et al.  The analysis of image motion by the rabbit retina , 1968, The Journal of physiology.

[221]  G. Balkema,et al.  Characterization of abnormalities in the visual system of the mutant mouse pearl , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[222]  G. Henry,et al.  Neural and behavioral effects of early eye rotation on the optokinetic system in the wallaby, Macropus eugenii. , 1995, Journal of neurophysiology.

[223]  F. A. Miles,et al.  Long-term adaptive changes in primate vestibuloocular reflex. IV. Electrophysiological observations in flocculus of adapted monkeys. , 1980, Journal of neurophysiology.

[224]  H. Collewijn Direction-selective units in the rabbit's nucleus of the optic tract , 1975, Brain Research.

[225]  M. Cynader,et al.  The effect of visual cortex lesions on vertical optokinetic nystagmus in the cat , 1988, Brain Research.

[226]  Richard V Abadi,et al.  Waveform characteristics in congenital nystagmus , 1987, Documenta Ophthalmologica.

[227]  K. Hoffmann,et al.  Retinal input to direction selective cells in the nucleus tractus opticus of the cat , 1975, Brain Research.

[228]  W. Waespe,et al.  Purkinje cell activity in the flocculus of vestibular neurectomized and normal monkeys during optokinetic nystagmus (OKN) and smooth pursuit eye movements , 2004, Experimental Brain Research.

[229]  H. Collewijn,et al.  Effects of neonatal and late unilateral enucleation on optokinetic responses and optic nerve projections in the rabbit , 2004, Experimental Brain Research.

[230]  A M Bronstein,et al.  Visual control of postural orientation and equilibrium in congenital nystagmus. , 2000, Investigative ophthalmology & visual science.

[231]  E. Crosby Relations of brain centers to normal and abnormal eye movements in the horizontal plane , 1953 .

[232]  P. Pasik,et al.  Effects of cerebral lesions upon opto-kinetic nystagmus in monkeys. , 1959, Journal of neurophysiology.

[233]  E. Tauber,et al.  Disconjugate Eye Movement Patterns during Optokinetic Stimulation of the African Chameleon, Chameleo melleri , 1967, Nature.

[234]  R. Williams,et al.  The congenital and see-saw nystagmus in the prototypical achiasma of canines: comparison to the human achiasmatic prototype , 1998, Vision Research.

[235]  J. Schmidt,et al.  Reversed visuomotor behavior mediated by induced ipsilateral retinal projections in goldfish. , 1977, Journal of Neurophysiology.

[236]  J L Demer,et al.  Cortical areas involved in OKN and VOR in cats: cortical lesions , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[237]  Ernst Mach,et al.  Grundlinien der Lehre von den Bewegungsempfindungen , 1967 .

[238]  J. Klooster,et al.  Retinopretectal projections in albino and pigmented rabbits: An autoradiographic study , 1983, Brain Research.

[239]  H. Hermann,et al.  Eye movements in the goldfish. , 1971, Vision research.

[240]  Jens M. Rick,et al.  Optokinetic behavior is reversed in achiasmatic mutant zebrafish larvae , 2000, Current Biology.

[241]  D. R. Wylie,et al.  Responses of optokinetic neurons in the pretectum and accessory optic system of the pigeon to large-field plaids , 2002, Journal of Comparative Physiology A.

[242]  M. Cynader,et al.  Electrophysiology of lateral and dorsal terminal nuclei of the cat accessory optic system. , 1984, Journal of neurophysiology.

[243]  H. Collewijn,et al.  Optokinetic and vestibulo-ocular reflexes in dark-reared rabbits , 1977, Experimental Brain Research.

[244]  S. Sonoda,et al.  A novel PAX6 gene mutation (P118R) in a family with congenital nystagmus associated with a variant form of aniridia , 2000, Graefe's Archive for Clinical and Experimental Ophthalmology.

[245]  C. Maioli,et al.  The horizontal optokinetic nystagmus in the cat , 2004, Experimental Brain Research.

[246]  Joel Pokorny,et al.  Characterization and use of a digital light projector for vision research , 2001, Vision Research.

[247]  M. Gresty,et al.  Reversed Optokinetic Nystagmus (OKN): Mechanism and Clinical Significance , 1980, Annals of neurology.

[248]  J. Dowling,et al.  Directional asymmetries in the optokinetic response of larval zebrafish (Danio rerio). , 2005, Zebrafish.

[249]  B J Frost,et al.  Eye movements in Daphnia pulex (De Geer). , 1975, The Journal of experimental biology.

[250]  W. Precht,et al.  Vestibular mechanisms. , 1979, Annual review of neuroscience.

[251]  S. Easter,et al.  The development of eye movements in the zebrafish (Danio rerio). , 1997, Developmental psychobiology.

[252]  S. Hunt,et al.  Optokinetic nystagmus and the accessory optic system of pigeon and turtle. , 1979, Brain, behavior and evolution.

[253]  H. Collewijn,et al.  Optokinetic nystagmus in man: Role of the central and peripheral retina and occurrence of asymmetries , 1983, Behavioural Brain Research.