The calculation of posterior distributions by data augmentation
暂无分享,去创建一个
[1] J. Doob. Stochastic processes , 1953 .
[2] J. Schwartz,et al. Linear Operators. Part I: General Theory. , 1960 .
[3] Calyampudi Radhakrishna Rao,et al. Linear Statistical Inference and its Applications , 1967 .
[4] P. Odell,et al. A Numerical Procedure to Generate a Sample Covariance Matrix , 1966 .
[5] L. B. Rall,et al. Computational Solution of Nonlinear Operator Equations , 1969 .
[6] G. C. Tiao,et al. Bayesian estimation of latent roots and vectors with special reference to the bivariate normal distribution , 1969 .
[7] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[8] L. A. Goodman. Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .
[9] L. A. Goodman. The Analysis of Systems of Qualitative Variables When Some of the Variables Are Unobservable. Part I-A Modified Latent Structure Approach , 1974, American Journal of Sociology.
[10] Calyampudi R. Rao,et al. Linear Statistical Inference and Its Applications. , 1975 .
[11] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[12] S. Haberman. Analysis of qualitative data , 1978 .
[13] T. Louis. Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .
[14] Peter E. Rossi,et al. Bayesian analysis of dichotomous quantal response models , 1984 .
[15] J. E. H. Shaw,et al. The implementation of the bayesian paradigm , 1985 .
[16] L. Tierney,et al. Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .
[17] Kim-Hung Li,et al. Imputation using Markov chains , 1988 .