Optimal design of digital IIR filters by model-fitting frequency response data

A new method is presented for optimal estimation of rational transfer function parameters to match arbitrarily-shaped frequency-domain (FD) specifications in the least-squares sense. The design is performed directly in the digital domain. The frequencies at which the specifications are given may be arbitrarily spaced. It is shown that the numerator and denominator estimation problems can be theoretically decoupled into smaller dimensional problems. The decoupled criteria retain the global optimality properties. The denominator criterion is nonlinear but possesses a weighted-quadratic structure that is utilized to formulate an iterative algorithm. Once the optimal denominator is found, the optimal numerator can be obtained by linear least-squares.<<ETX>>

[1]  T. Hinamoto,et al.  Design of 2-D separable-denominator recursive digital filters , 1984 .

[2]  J. L. Hock,et al.  An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .

[3]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[4]  Arye Nehorai A minimal parameter adaptive notch filter with constrained poles and zeros , 1985, IEEE Trans. Acoust. Speech Signal Process..

[5]  Ramdas Kumaresan,et al.  Fitting a pole-zero filter model to arbitrary frequency response samples , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[6]  A. Evans,et al.  Optimal least squares time-domain synthesis of recursive digital filters , 1973 .

[7]  E. Miller,et al.  Pole extraction from real-frequency information , 1980, Proceedings of the IEEE.

[8]  Ramdas Kumaresan On a frequency domain analog of Prony's method , 1990, IEEE Trans. Acoust. Speech Signal Process..

[9]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[10]  C. Sanathanan,et al.  Transfer function synthesis as a ratio of two complex polynomials , 1963 .

[11]  Arnab K. Shaw A decoupled approach for optimal estimation of transfer function parameters from input-output data , 1994, IEEE Trans. Signal Process..

[12]  L. Jackson Digital filters and signal processing , 1985 .

[13]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[14]  J. Cadzow Recursive digital filter synthesis via gradient based algorithms , 1976 .

[15]  F. B. Hildebrand,et al.  Introduction To Numerical Analysis , 1957 .

[16]  Ramdas Kumaresan,et al.  Identification of rational transfer function from frequency response sample , 1990 .

[17]  Arnab K. Shaw An optimal method for identification of pole-zero transfer functions , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[18]  R. Roberts,et al.  The use of second-order information in the approximation of discreate-time linear systems , 1976 .

[19]  L. Scharf,et al.  Statistical Signal Processing: Detection, Estimation, and Time Series Analysis , 1991 .

[20]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[21]  Arnab K. Shaw Optimal identification of discrete-time systems from impulse response data , 1994, IEEE Trans. Signal Process..

[22]  Leonard Weiss,et al.  Prony’s Method, Z-Transforms, and Padé Approximation , 1963 .

[23]  R. Kumaresan Parameter Estimation of Signals Corrupted by Noise Using a Matrix of Divided Differences , 1989 .

[24]  E. C. Levy Complex-curve fitting , 1959, IRE Transactions on Automatic Control.

[25]  C. Burrus,et al.  Time domain design of recursive digital filters , 1970 .

[26]  Edward J. Wegman,et al.  Statistical Signal Processing , 1985 .

[27]  B. Friedlander,et al.  The Modified Yule-Walker Method of ARMA Spectral Estimation , 1984, IEEE Transactions on Aerospace and Electronic Systems.