X-THEORY AND REALITY

In this paper we introduce a new ^-theory denoted by KR which is, in a sense, a mixture of these three. Our definition is motivated partly by analogy with real algebraic geometry and partly by the theory of real elliptic operators. In fact, for a thorough treatment of the index problem for real elliptic operators, our KR-theory is essential. On the other hand, from the purely topological point of view, KR-theory has a number of advantages and there is a strong case for regarding it as the primary theory and obtaining all the others from it. One of the main purposes of this paper is in fact to show how i£.R-theory leads to an elegant proof of the periodicity theorem for XO-theory, starting essentially from the periodicity theorem for JT-theory as proved in (3). On the way we also encounter, in a natural manner, the self-conjugate theory and various exact sequences between the different theories. There is here a considerable overlap with the thesis of Anderson (1) but, from our new vantage point, the relationship between the various theories is much easier to see. Recently Karoubi (8) has developed an abstract Z'-theory for suitable categories with involution. Our theory is included in this abstraction but its particular properties are not developed in (8), nor is it exploited to simplify the iTO-periodicity. The definition and elementary properties of KR are given in § 1. The periodicity theorem and general cohomology properties for KR are discussed in § 2. Then in § 3 we introduce various derived theories— KR with coefficients in certain spaces—ending up with the periodicity theorem for KO. In § 4 we discuss briefly the relation of KR with Clifford algebras on the lines of (4), and in particular we establish a lemma which is used in § 3. The significance of KR-thsory for the topological study of real elliptic operators is then briefly discussed in § 5.