Nonconvex Functions Optimization Using an Estimation of Distribution Algorithm Based on a Multivariate Extension of the Clayton Copula
暂无分享,去创建一个
[1] H. Joe. Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .
[2] C. Genest,et al. Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .
[3] H. Joe. Multivariate models and dependence concepts , 1998 .
[4] S. T. Buckland,et al. An Introduction to the Bootstrap. , 1994 .
[5] Jianchao Zeng,et al. VQ Codebook Design Algorithm Based on Copula Estimation of Distribution Algorithm , 2011, 2011 First International Conference on Robot, Vision and Signal Processing.
[6] José Ignacio Hidalgo,et al. Bivariate empirical and n-variate Archimedean copulas in estimation of distribution algorithms , 2010, IEEE Congress on Evolutionary Computation.
[7] Barnabás Póczos,et al. Copula-based Kernel Dependency Measures , 2012, ICML.
[8] Jose Miguel Puerta,et al. Avoiding premature convergence in estimation of distribution algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.
[9] Pedro Larrañaga,et al. Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.
[10] J. A. Lozano,et al. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .
[11] Marta Soto,et al. copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas , 2012, ArXiv.
[12] E. Luciano,et al. Copula Methods in Finance: Cherubini/Copula , 2004 .
[13] E. Luciano,et al. Copula methods in finance , 2004 .
[14] Martin Pelikan,et al. An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..