A New Approach to Estimate Fractal Dimension of Texture Images

One of the most important visual attributes for image analysis and pattern recognition is the texture. Its analysis allows to describe and identify different regions in the image through pixel organization, performing a better image description and classification. This paper presents a novel approach for texture analysis, based on calculation of the fractal dimension of binary images generated from a texture, using different threshold values. The proposed approach performs a complexity analysis as the threshold values changes, producing a texture signature which is able to characterize efficiently different texture classes. The paper illustrates the novel method performance on an experiment using Brodatz images.

[1]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[2]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[3]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[4]  N. Lam,et al.  Multi-Scale Fractal Analysis of Image Texture and Pattern , 1999 .

[5]  Thomas S. Huang,et al.  Image processing , 1971 .

[6]  Marc Acheroy,et al.  Texture classification using Gabor filters , 2002, Pattern Recognit. Lett..

[7]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[8]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[9]  Qian Du,et al.  A New Box-Counting Method for Estimation of Image Fractal Dimension , 2006, 2006 International Conference on Image Processing.

[10]  Robert Azencott,et al.  Texture Classification Using Windowed Fourier Filters , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Jun Liu,et al.  Texture classification using multiresolution Markov random field models , 1999, Pattern Recognit. Lett..

[12]  C. Tricot Curves and Fractal Dimension , 1994 .

[13]  John Daugman,et al.  Gabor wavelets for statistical pattern recognition , 1998 .

[14]  B. Everitt,et al.  Applied Multivariate Data Analysis: Everitt/Applied Multivariate Data Analysis , 2001 .

[15]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[17]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[18]  Bidyut Baran Chaudhuri,et al.  Texture Segmentation Using Fractal Dimension , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  W. B. Marks,et al.  Fractal methods and results in cellular morphology — dimensions, lacunarity and multifractals , 1996, Journal of Neuroscience Methods.

[20]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[21]  David S. Ebert,et al.  Texturing and Modeling: A Procedural Approach , 1994 .

[22]  Manfred Schroeder,et al.  Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise , 1992 .

[23]  Pau-Choo Chung,et al.  A Fast Algorithm for Multilevel Thresholding , 2001, J. Inf. Sci. Eng..