Visual Quality Enhancement in Optoacoustic Tomography Using Active Contour Segmentation Priors

Segmentation of biomedical images is essential for studying and characterizing anatomical structures as well as for detection and evaluation of tissue pathologies. Segmentation has been further shown to enhance the reconstruction performance in many tomographic imaging modalities by accounting for heterogeneities in the excitation field and tissue properties in the imaged region. This is particularly relevant in optoacoustic tomography, where discontinuities in the optical and acoustic tissue properties, if not properly accounted for, may result in deterioration of the imaging performance. Efficient segmentation of optoacoustic images is often hampered by the relatively low intrinsic contrast of large anatomical structures, which is further impaired by the limited angular coverage of some commonly employed tomographic imaging configurations. Herein, we analyze the performance of active contour models for boundary segmentation in cross-sectional optoacoustic tomography. The segmented mask is employed to construct a two compartment model for the acoustic and optical parameters of the imaged tissues, which is subsequently used to improve accuracy of the image reconstruction routines. The performance of the suggested segmentation and modeling approach are showcased in tissue-mimicking phantoms and small animal imaging experiments.

[1]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[2]  Stefan Morscher,et al.  Semi-quantitative Multispectral Optoacoustic Tomography (MSOT) for volumetric PK imaging of gastric emptying , 2014, Photoacoustics.

[3]  Vasilis Ntziachristos,et al.  Volumetric real-time multispectral optoacoustic tomography of biomarkers , 2011, Nature Protocols.

[4]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[5]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[6]  M. Patterson,et al.  Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  Vasilis Ntziachristos,et al.  Optoacoustic tomography with varying illumination and non-uniform detection patterns. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Ron Kimmel,et al.  Numerical geometry of images - theory, algorithms, and applications , 2003 .

[10]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[11]  Vasilis Ntziachristos,et al.  Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation , 2009, IEEE Transactions on Medical Imaging.

[12]  Lihong V. Wang,et al.  Small-Animal Whole-Body Photoacoustic Tomography: A Review , 2014, IEEE Transactions on Biomedical Engineering.

[13]  Dirk Schadendorf,et al.  Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging , 2015, Science Translational Medicine.

[14]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[15]  J. Alison Noble,et al.  Ultrasound image segmentation: a survey , 2006, IEEE Transactions on Medical Imaging.

[16]  D. Razansky,et al.  Multispectral Optoacoustic Tomography—Volumetric Color Hearing in Real Time , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  Xosé Luís Deán-Ben,et al.  Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging , 2014, Photoacoustics.

[18]  S R Arridge,et al.  Optical tomographic reconstruction in a complex head model using a priori region boundary information. , 1999, Physics in medicine and biology.

[19]  P. Beard Biomedical photoacoustic imaging , 2011, Interface Focus.

[20]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[21]  S. Gambhir,et al.  Light in and sound out: emerging translational strategies for photoacoustic imaging. , 2014, Cancer research.

[22]  S. Jacques Optical properties of biological tissues: a review , 2013, Physics in medicine and biology.

[23]  Vasilis Ntziachristos,et al.  Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions , 2011 .

[24]  Vasilis Ntziachristos,et al.  Fast Semi-Analytical Model-Based Acoustic Inversion for Quantitative Optoacoustic Tomography , 2010, IEEE Transactions on Medical Imaging.

[25]  M. Schweiger,et al.  The finite element method for the propagation of light in scattering media: boundary and source conditions. , 1995, Medical physics.

[26]  V. Ntziachristos,et al.  Molecular imaging by means of multispectral optoacoustic tomography (MSOT). , 2010, Chemical reviews.

[27]  Xuesi Chen,et al.  Comprehensive studies of pharmacokinetics and biodistribution of indocyanine green and liposomal indocyanine green by multispectral optoacoustic tomography , 2015 .

[28]  Vasilis Ntziachristos,et al.  Weighted model-based optoacoustic reconstruction in acoustic scattering media. , 2013, Physics in medicine and biology.

[29]  Vasilis Ntziachristos,et al.  Performance of iterative optoacoustic tomography with experimental data , 2009 .

[30]  T. Poggio,et al.  A parallel algorithm for real-time computation of optical flow , 1989, Nature.

[31]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.

[32]  Steven L. Jacques,et al.  Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation , 2014, Photoacoustics.

[33]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[34]  Vasilis Ntziachristos,et al.  Acceleration of Optoacoustic Model-Based Reconstruction Using Angular Image Discretization , 2012, IEEE Transactions on Medical Imaging.

[35]  Vasilis Ntziachristos,et al.  Light fluence normalization in turbid tissues via temporally unmixed multispectral optoacoustic tomography. , 2015, Optics letters.

[36]  R. Günther,et al.  Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[37]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[38]  Lihong V Wang,et al.  Universal back-projection algorithm for photoacoustic computed tomography , 2005, SPIE BiOS.

[39]  Michael Unser,et al.  Snakes on a Plane: A perfect snap for bioimage analysis , 2015, IEEE Signal Processing Magazine.

[40]  Junjie Yao,et al.  Photoacoustic tomography: fundamentals, advances and prospects. , 2011, Contrast media & molecular imaging.

[41]  Ye Yuan,et al.  Adaptive active contours without edges , 2012, Math. Comput. Model..

[42]  Simon R Arridge,et al.  Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method. , 2006, Applied optics.

[43]  Vasilis Ntziachristos,et al.  Effects of small variations of speed of sound in optoacoustic tomographic imaging. , 2014, Medical physics.

[44]  Paul Church Snakes on a Plane , 2008 .

[45]  Tyler Harrison,et al.  A least-squares fixed-point iterative algorithm for multiple illumination photoacoustic tomography. , 2013, Biomedical optics express.

[46]  B T Cox,et al.  k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. , 2010, Journal of biomedical optics.

[47]  S. Arridge,et al.  Optical tomography: forward and inverse problems , 2009, 0907.2586.

[48]  Vasilis Ntziachristos,et al.  Multispectral optoacoustic tomography by means of normalized spectral ratio. , 2011, Optics letters.

[49]  Vasilis Ntziachristos,et al.  Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo , 2009 .

[50]  Daniel Razansky,et al.  Multiscale edge detection and parametric shape modeling for boundary delineation in optoacoustic images , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[51]  Vasilis Ntziachristos,et al.  Model-based optoacoustic inversion with arbitrary-shape detectors. , 2011, Medical physics.

[52]  Vasilis Ntziachristos,et al.  Estimation of optoacoustic contrast agent concentration with self-calibration blind logarithmic unmixing. , 2014, Physics in medicine and biology.

[53]  Vasilis Ntziachristos,et al.  Hybrid System for Simultaneous Fluorescence and X-Ray Computed Tomography , 2010, IEEE Transactions on Medical Imaging.

[54]  Vasilis Ntziachristos,et al.  Real-time handheld multispectral optoacoustic imaging. , 2013, Optics letters.

[55]  Lihong V. Wang,et al.  Biomedical Optics: Principles and Imaging , 2007 .

[56]  Wiendelt Steenbergen,et al.  Speed-of-sound compensated photoacoustic tomography for accurate imaging. , 2012, Medical physics.

[57]  V. Ntziachristos Going deeper than microscopy: the optical imaging frontier in biology , 2010, Nature Methods.

[58]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Phaneendra K. Yalavarthy,et al.  Born-ratio type data normalization improves quantitation in photoacoustic tomography , 2014, Medical Imaging.

[60]  Daniel Razansky,et al.  Extending Biological Imaging to the Fifth Dimension: Evolution of volumetric small animal multispectral optoacoustic tomography. , 2015, IEEE Pulse.

[61]  Allen R. Tannenbaum,et al.  Localizing Region-Based Active Contours , 2008, IEEE Transactions on Image Processing.

[62]  Vasilis Ntziachristos,et al.  Fast unmixing of multispectral optoacoustic data with vertex component analysis , 2014 .