On approximation of Ginzburg-Landau minimizers by $\mathbb S^1$-valued maps in domains with vanishingly small holes

We consider a two-dimensional Ginzburg-Landau problem on an arbitrary domain with a finite number of vanishingly small circular holes. A special choice of scaling relation between the material and geometric parameters (Ginzburg-Landau parameter vs hole radius) is motivated by a recently dsicovered phenomenon of vortex phase separation in superconducting composites. We show that, for each hole, the degrees of minimizers of the Ginzburg-Landau problems in the classes of $\mathbb S^1$-valued and $\mathbb C$-valued maps, respectively, are the same. The presence of two parameters that are widely separated on a logarithmic scale constitutes the principal difficulty of the analysis that is based on energy decomposition techniques.

[1]  O. Iaroshenko,et al.  Vortex phase separation in mesoscopic superconductors , 2013, Scientific Reports.

[2]  Leonid Berlyand,et al.  Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes , 2013, Networks Heterog. Media.

[3]  Mickaël Dos Santos,et al.  Ginzburg-Landau model with small pinning domains , 2011, Networks Heterog. Media.

[4]  Ayman Kachmar Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II , 2007, 0711.4248.

[5]  H. Aydi,et al.  Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint , 2010 .

[6]  Sylvia Serfaty,et al.  Vortices in the Magnetic Ginzburg-Landau Model , 2006 .

[7]  L. Bronsard,et al.  Vortices and pinning effects for the Ginzburg‐Landau model in multiply connected domains , 2006 .

[8]  L. Bronsard,et al.  Pinning effects and their breakdown for a Ginzburg–Landau model with normal inclusions , 2005 .

[9]  P. Bauman,et al.  VORTEX PINNING WITH BOUNDED FIELDS FOR THE GINZBURG-LANDAU EQUATION , 2003 .

[10]  S. Serfaty,et al.  Ginzburg-Landau minimizers near the first critical field have bounded vorticity , 2003 .

[11]  Sylvia Serfaty,et al.  ON THE ENERGY OF TYPE-II SUPERCONDUCTORS IN THE MIXED PHASE , 2000 .

[12]  S. Serfaty,et al.  Pinning phenomena in the Ginzburg-Landau model of superconductivity , 2000, cond-mat/0004177.

[13]  Sylvia Serfaty,et al.  Global minimizers for the Ginzburg–Landau functional below the first critical magnetic field , 2000 .

[14]  R. Jerrard Lower bounds for generalized Ginzburg-Landau functionals , 1999 .

[15]  Etienne Sandier,et al.  Lower Bounds for the Energy of Unit Vector Fields and Applications , 1998 .

[16]  Giles Richardson,et al.  Vortex pinning by inhomogeneities in type-II superconductors , 1997 .

[17]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[18]  Frédéric Hélein,et al.  Asymptotics for the minimization of a Ginzburg-Landau functional , 1993 .