High-Order Regularized Regression in Electrical Impedance Tomography

We present a novel approach for the inverse problem in electrical impedance tomography based on regularized quadratic regression. Our contribution introduces a new formulation for the forward model in the form of a nonlinear integral transform, that maps changes in the electrical properties of a domain to their respective variations in boundary data. Using perturbation theory the transform is approximated to yield a high-order misfit unction which is then used to derive a regularized inverse problem. In particular, we consider the nonlinear problem to second-order accuracy, hence our approximation method improves upon the local linearization of the forward mapping. The inverse problem is approached using Newton's iterative algorithm and results from simulated experiments are presented. With a moderate increase in computational complexity, the method yields superior results compared to those of regularized linear regression and can be implemented to address the nonlinear inverse problem.

[1]  J. Hayashi [Sampling methods]. , 1982, Josanpu zasshi = The Japanese journal for midwife.

[2]  O. Dorn,et al.  Level set methods for inverse scattering , 2006 .

[3]  D. Oldenburg,et al.  METHODS FOR CALCULATING FRÉCHET DERIVATIVES AND SENSITIVITIES FOR THE NON‐LINEAR INVERSE PROBLEM: A COMPARATIVE STUDY1 , 1990 .

[4]  J.P. Kaipio,et al.  Three-dimensional electrical impedance tomography based on the complete electrode model , 1999, IEEE Transactions on Biomedical Engineering.

[5]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[6]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[7]  Eric L. Miller,et al.  Sensitivity Calculations for Poisson's Equation via the Adjoint Field Method , 2011, IEEE Geoscience and Remote Sensing Letters.

[8]  Nick Polydorides,et al.  The linearization error in electrical impedance tomography , 2009 .

[9]  Alan C. Tripp,et al.  Two-dimensional resistivity inversion , 1984 .

[10]  B. Hofmann,et al.  Convergence rates for the iteratively regularized Gauss–Newton method in Banach spaces , 2010 .

[11]  Michael S. Zhdanov,et al.  Geophysical Electromagnetic Theory and Methods , 2009 .

[12]  M. Malek Vector Calculus , 2014 .

[13]  William R B Lionheart,et al.  Part 1: the reconstruction problem , 2004 .

[14]  Christopher C. Pain,et al.  Anisotropic resistivity inversion , 2003 .

[15]  William R B Lionheart,et al.  A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project , 2002 .

[16]  Matti Lassas,et al.  REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .

[17]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[18]  N. Papadopoulos,et al.  Two‐dimensional and three‐dimensional resistivity imaging in archaeological site investigation , 2006 .

[19]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[20]  Tor Arne Johansen,et al.  On Tikhonov regularization, bias and variance in nonlinear system identification , 1997, Autom..

[21]  Dominique Lesselier,et al.  TOPICAL REVIEW: Level set methods for inverse scattering , 2006 .

[22]  A. Bakushinskii The problem of the convergence of the iteratively regularized Gauss-Newton method , 1992 .

[23]  David S. Holder,et al.  Electrical Impedance Tomography : Methods, History and Applications , 2004 .

[24]  Olaf A. Cirpka,et al.  Temporal moments in geoelectrical monitoring of salt tracer experiments , 2008 .

[25]  William R B Lionheart,et al.  The Reconstruction Problem , 2017 .

[26]  William Rundell,et al.  A Second Degree Method for Nonlinear Inverse Problems , 1999, SIAM J. Numer. Anal..

[27]  Armin Lechleiter,et al.  Newton regularizations for impedance tomography: a numerical study , 2006 .

[28]  T. Günther,et al.  Three‐dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion , 2006 .

[29]  Andy Adler,et al.  In Vivo Impedance Imaging With Total Variation Regularization , 2010, IEEE Transactions on Medical Imaging.

[30]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[31]  William R B Lionheart,et al.  Uses and abuses of EIDORS: an extensible software base for EIT , 2006, Physiological measurement.

[32]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[33]  T. Günther,et al.  Three‐dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion , 2006 .

[34]  Karen Willcox,et al.  Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..

[35]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[36]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[37]  Fadil Santosa,et al.  A computational algorithm to determine cracks from electrostatic boundary measurements , 1991 .

[38]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[39]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[40]  A. Binley,et al.  DC Resistivity and Induced Polarization Methods , 2005 .

[41]  J. Davenport Editor , 1960 .

[42]  Andreas Kemna,et al.  Complex resistivity tomography for environmental applications , 2000 .

[43]  David Isaacson,et al.  NOSER: An algorithm for solving the inverse conductivity problem , 1990, Int. J. Imaging Syst. Technol..

[44]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.