A Characterization of the Average Tree Solution for Cycle-Free Graph Games

In this note we provide a strategic implementation of the Average Tree solution for zero-monotonic cycle-free graph games. That is, we propose a non-cooperative mechanism of which the unique subgame perfect equilibrium payoffs correspond to the average hierarchical outcome of the game. This mechanism takes into account that a player is only able to communicate with other players (i.e., to make proposals about a division of the surplus of cooperation) when they are connected in the graph.

[1]  J. M. Bilbao,et al.  Contributions to the Theory of Games , 2005 .

[2]  L. Shapley A Value for n-person Games , 1988 .

[3]  Yuan Ju,et al.  Implementing cooperative solution concepts: a generalized bidding approach , 2006 .

[4]  David Wettstein,et al.  Bidding for the Surplus : A Non-cooperative Approach to the Shapley Value , 2001, J. Econ. Theory.

[5]  Gerard van der Laan,et al.  Harsanyi power solutions for graph-restricted games , 2003, Int. J. Game Theory.

[6]  Y. Funaki,et al.  Axiomatization and Implementation of Discounted Shapley Values , 2010 .

[7]  Felix Schlenk,et al.  Proof of Theorem 3 , 2005 .

[8]  Gustavo Bergantiños,et al.  An implementation of the Owen value , 2003, Games Econ. Behav..

[9]  Sylvain Béal,et al.  Rooted-tree solutions for tree games , 2010, Eur. J. Oper. Res..

[10]  Yves Sprumont,et al.  Sharing a River , 2002, J. Econ. Theory.

[11]  Marco Slikker Bidding for surplus in network allocation problems , 2007, J. Econ. Theory.

[12]  S. Hart,et al.  Potential, value, and consistency , 1989 .

[13]  Roger B. Myerson,et al.  Graphs and Cooperation in Games , 1977, Math. Oper. Res..

[14]  Shlomo Weber,et al.  Strongly balanced cooperative games , 1992 .

[15]  P. Jean-Jacques Herings,et al.  The average tree solution for cycle-free graph games , 2008, Games Econ. Behav..

[16]  Marco Slikker A characterization of the position value* , 2005, Int. J. Game Theory.

[17]  G. Owen,et al.  The consistent Shapley value for hyperplane games , 1989 .

[18]  Mathias Nordvall Communication in Games , 2012 .

[19]  Dolf Talman,et al.  Average tree solution and subcore for acyclic graph games , 2008 .

[20]  Mamoru Kaneko,et al.  Cores of partitioning games , 1982, Math. Soc. Sci..

[21]  G. Owen Values of graph-restricted games , 1986 .

[22]  Peter Borm,et al.  On the Position Value for Communication Situations , 1992, SIAM J. Discret. Math..

[23]  Mark Finkelstein,et al.  Axiomatization and Implementation , 1964 .

[24]  G. Demange Intermediate Preferences and Stable Coalition Structures , 1994 .

[25]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[26]  R. Myerson Conference structures and fair allocation rules , 1978 .

[27]  Yukihiko Funaki,et al.  Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values , 2007, Soc. Choice Welf..

[28]  Oriol Carbonell-Nicolau Games and Economic Behavior , 2011 .

[29]  P. Jean-Jacques Herings,et al.  The average tree solution for cooperative games with communication structure , 2010, Games Econ. Behav..

[30]  David Wettstein,et al.  Efficient bidding with externalities , 2006, Games Econ. Behav..

[31]  Daniel Granot,et al.  The Relationship Between Convex Games and Minimum Cost Spanning Tree Games: A Case for Permutationally Convex Games , 1982 .

[32]  Fair agreements for sharing international rivers with multiple springs and externalities , 2012 .

[33]  David Wettstein,et al.  Choosing Wisely: A Multibidding Approach , 2002 .

[34]  Gabrielle Demange,et al.  On Group Stability in Hierarchies and Networks , 2004, Journal of Political Economy.

[35]  Suresh Mutuswami,et al.  Bidding for the surplus: realizing efficient outcomes in economic environments , 2004, Games Econ. Behav..

[36]  David Wettstein,et al.  Forming efficient networks , 2005 .

[37]  David Wettstein,et al.  1 CHOOSING WISELY : A MULTI-BIDDING APPROACH , 2022 .