Setting Parameters by Example

We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We describe algorithms for solving such problems for minimum spanning trees, shortest paths, and other "optimal subgraph" problems and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.

[1]  Pat Langley,et al.  Interactive Refinement of Route Preferences for Driving , 1998 .

[2]  Greg N. Frederickson Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and k Smallest Spanning Trees , 1997, SIAM J. Comput..

[3]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[4]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[5]  J. Matoušek,et al.  On geometric optimization with few violated constraints , 1994, SCG '94.

[6]  Jirí Matousek On geometric optimization with few violated constraints , 1994, SCG '94.

[7]  Toshihide Ibaraki,et al.  An Algorithm for Finding K Minimum Spanning Trees , 1981, SIAM J. Comput..

[8]  Kenneth L. Clarkson,et al.  Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.

[9]  Robert E. Tarjan,et al.  Verification and Sensitivity Analysis of Minimum Spanning Trees in Linear Time , 1992, SIAM J. Comput..

[10]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[11]  Richard Pavley,et al.  A Method for the Solution of the Nth Best Path Problem , 1959, JACM.

[12]  Leonidas J. Guibas,et al.  Parametric and kinetic minimum spanning trees , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[13]  Uzi Vishkin,et al.  On Finding Lowest Common Ancestors: Simplification and Parallelization , 1988, AWOC.

[14]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[15]  Robert E. Tarjan,et al.  Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.

[16]  Philip N. Klein,et al.  A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.

[17]  Jirí Matousek,et al.  Approximations and optimal geometric divide-and-conquer , 1991, STOC '91.

[18]  Greg N. Frederickson,et al.  Data structures for on-line updating of minimum spanning trees , 1983, STOC.