Flexible resources for quantum metrology

Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilizing entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, the 2D cluster state can serve as a flexible resource that allows one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths.

[1]  M. W. Mitchell,et al.  Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.

[2]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[3]  M. Nussbaum,et al.  Asymptotic Error Rates in Quantum Hypothesis Testing , 2007, Communications in Mathematical Physics.

[4]  H. Briegel,et al.  One-way Quantum Computation - a tutorial introduction , 2006, quant-ph/0603226.

[5]  E. Bagan,et al.  Quantum reverse engineering and reference-frame alignment without nonlocal correlations , 2004 .

[6]  Dominic Berry Adaptive Phase Measurements , 2002 .

[7]  Matthias Rosenkranz,et al.  Parameter estimation with cluster states , 2008, 0812.1747.

[8]  Wolfgang Dür,et al.  Universal resources for measurement-based quantum computation. , 2006, Physical review letters.

[9]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[10]  M. Paris,et al.  Squeezed vacuum as a universal quantum probe , 2008, 0802.1682.

[11]  Matteo G. A. Paris,et al.  The modern tools of quantum mechanics , 2011, 1110.6815.

[12]  Alfredo Luis,et al.  Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. , 2010, Physical review letters.

[13]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[14]  S. Pirandola,et al.  Ultimate Precision of Adaptive Noise Estimation. , 2016, Physical review letters.

[15]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[16]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[17]  W. Dur,et al.  Optimal quantum states for frequency estimation , 2014, 1402.6946.

[18]  Nicol'as Quesada,et al.  Physical resources for optical phase estimation , 2016, 1603.02375.

[19]  Martin Fraas,et al.  Bayesian quantum frequency estimation in presence of collective dephasing , 2013, 1311.5576.

[20]  Alfredo Luis,et al.  Quantum-limited metrology with nonlinear detection schemes , 2010 .

[21]  Animesh Datta,et al.  Quantum metrology: dynamics versus entanglement. , 2008, Physical review letters.

[22]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[23]  Wolfgang Dur,et al.  Heisenberg scaling in Gaussian quantum metrology , 2015, 1502.07654.

[24]  Jason F. Ralph,et al.  The role of entanglement in calibrating optical quantum gyroscopes , 2015, 1505.06321.

[25]  Yasuhiro Takahashi,et al.  The quantum fourier transform on a linear nearest neighbor architecture , 2007, Quantum Inf. Comput..

[26]  B. Roy Frieden,et al.  Science from Fisher Information: A Unification , 2004 .

[27]  Giuliano Benenti,et al.  Quantum Computers, Algorithms and Chaos , 2006 .

[28]  R. J. Sewell,et al.  Interaction-based quantum metrology showing scaling beyond the Heisenberg limit , 2010, Nature.

[29]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[30]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[31]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[32]  Thomas G. Draper,et al.  A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.

[33]  Marcin Jarzyna,et al.  True precision limits in quantum metrology , 2014, 1407.4805.

[34]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[35]  Mankei Tsang,et al.  Quantum theory of superresolution for two incoherent optical point sources , 2015, 1511.00552.

[36]  A. S. Holevo,et al.  Covariant measurements and imprimitivity systems , 1984 .

[37]  Wolfgang Dur,et al.  Algebraic metrology: Nonoptimal but pretty good states and bounds , 2015 .

[38]  Markus Tiersch,et al.  Estimation of coherent error sources from stabilizer measurements , 2015, 1512.07083.

[39]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[40]  Pavel Sekatski,et al.  Quantum metrology with full and fast quantum control , 2016, 1603.08944.

[41]  P. Sekatski,et al.  Quantum metrology for the Ising Hamiltonian with transverse magnetic field , 2015, 1502.06459.

[42]  Jelmer J. Renema,et al.  Erratum: Quantum Noise Limited and Entanglement-Assisted Magnetometry [Phys. Rev. Lett.104, 133601 (2010)] , 2010 .

[43]  Carlton M. Caves,et al.  In-situ characterization of quantum devices with error correction , 2014, 1405.5656.

[44]  Nicol'as Quesada,et al.  Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement , 2014, 1404.7110.

[45]  Giulio Chiribella,et al.  Covariant quantum measurements that maximize the likelihood , 2004, quant-ph/0403083.

[46]  Stefano Mancini,et al.  High-sensitivity force measurement using entangled probes , 2003 .

[47]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[48]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[49]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[50]  B. Kraus,et al.  Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.

[51]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[52]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[53]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[54]  H. M. Wiseman,et al.  How to perform the most accurate possible phase measurements , 2009, 0907.0014.

[55]  Rafal Demkowicz-Dobrzanski,et al.  Quantum computation speedup limits from quantum metrological precision bounds , 2015 .

[56]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.

[57]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[58]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[59]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[60]  Jing Liu,et al.  A search algorithm for quantum state engineering and metrology , 2015, 1511.05327.

[61]  Robert RAUßENDORF MEASUREMENT-BASED QUANTUM COMPUTATION WITH CLUSTER STATES , 2009 .

[62]  G Chiribella,et al.  Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.

[63]  Christof Wunderlich,et al.  Two-dimensional cluster-state preparation with linear ion traps , 2009, 0901.0881.

[64]  P. Sekatski,et al.  Dynamical decoupling leads to improved scaling in noisy quantum metrology , 2015, 1512.07476.

[65]  Samuel L Braunstein,et al.  Exponentially enhanced quantum metrology. , 2008, Physical review letters.

[66]  Rafal Demkowicz-Dobrzanski,et al.  Optimal phase estimation with arbitrary a priori knowledge , 2011, 1102.0786.

[67]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[68]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[69]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[70]  Paola Cappellaro,et al.  Composite-pulse magnetometry with a solid-state quantum sensor , 2012, Nature Communications.

[71]  W. Marsden I and J , 2012 .

[72]  Edward H. Chen,et al.  True Limits to Precision via Unique Quantum Probe , 2014 .

[73]  Richard Cleve,et al.  Fast parallel circuits for the quantum Fourier transform , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[74]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[75]  Barry C. Sanders,et al.  Optimal quantum measurements for phase-shift estimation in optical interferometry , 1997 .

[76]  Stefano Mancini,et al.  Quantum limited force measurement in a cavityless optomechanical system (4 pages) , 2004 .

[77]  J. Kołodyński,et al.  Quantum limits in optical interferometry , 2014, 1405.7703.

[78]  H. Cramér Mathematical methods of statistics , 1947 .

[79]  K. Jensen,et al.  Quantum noise limited and entanglement-assisted magnetometry , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[80]  Stefano Pirandola,et al.  Ultimate precision of adaptive quantum metrology , 2016 .

[81]  G. D’Ariano,et al.  Optimal estimation of group transformations using entanglement , 2005, quant-ph/0506267.

[82]  Steward D. Personick,et al.  Application of quantum estimation theory to analog communication over quantum channels , 1971, IEEE Trans. Inf. Theory.

[83]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[84]  王晓光,et al.  Quantum Fisher Information for Density Matrices with Arbitrary Ranks , 2014 .

[85]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[86]  C. F. Roos,et al.  Precision spectroscopy with two correlated atoms , 2007 .

[87]  Einar Pius Parallel quantum computing: from theory to practice , 2015 .

[88]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.