Flexible resources for quantum metrology
暂无分享,去创建一个
Pavel Sekatski | Wolfgang Dur | Nicolai Friis | Vedran Dunjko | Hans J. Briegel | Davide Orsucci | Michalis Skotiniotis | V. Dunjko | H. Briegel | W. Dür | Davide Orsucci | P. Sekatski | N. Friis | M. Skotiniotis
[1] M. W. Mitchell,et al. Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.
[2] The Ligo Scientific Collaboration,et al. Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.
[3] M. Nussbaum,et al. Asymptotic Error Rates in Quantum Hypothesis Testing , 2007, Communications in Mathematical Physics.
[4] H. Briegel,et al. One-way Quantum Computation - a tutorial introduction , 2006, quant-ph/0603226.
[5] E. Bagan,et al. Quantum reverse engineering and reference-frame alignment without nonlocal correlations , 2004 .
[6] Dominic Berry. Adaptive Phase Measurements , 2002 .
[7] Matthias Rosenkranz,et al. Parameter estimation with cluster states , 2008, 0812.1747.
[8] Wolfgang Dür,et al. Universal resources for measurement-based quantum computation. , 2006, Physical review letters.
[9] Harry L. Van Trees,et al. Detection, Estimation, and Modulation Theory, Part I , 1968 .
[10] M. Paris,et al. Squeezed vacuum as a universal quantum probe , 2008, 0802.1682.
[11] Matteo G. A. Paris,et al. The modern tools of quantum mechanics , 2011, 1110.6815.
[12] Alfredo Luis,et al. Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. , 2010, Physical review letters.
[13] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[14] S. Pirandola,et al. Ultimate Precision of Adaptive Noise Estimation. , 2016, Physical review letters.
[15] H. Briegel,et al. Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.
[16] H. Briegel,et al. Measurement-based quantum computation , 2009, 0910.1116.
[17] W. Dur,et al. Optimal quantum states for frequency estimation , 2014, 1402.6946.
[18] Nicol'as Quesada,et al. Physical resources for optical phase estimation , 2016, 1603.02375.
[19] Martin Fraas,et al. Bayesian quantum frequency estimation in presence of collective dephasing , 2013, 1311.5576.
[20] Alfredo Luis,et al. Quantum-limited metrology with nonlinear detection schemes , 2010 .
[21] Animesh Datta,et al. Quantum metrology: dynamics versus entanglement. , 2008, Physical review letters.
[22] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[23] Wolfgang Dur,et al. Heisenberg scaling in Gaussian quantum metrology , 2015, 1502.07654.
[24] Jason F. Ralph,et al. The role of entanglement in calibrating optical quantum gyroscopes , 2015, 1505.06321.
[25] Yasuhiro Takahashi,et al. The quantum fourier transform on a linear nearest neighbor architecture , 2007, Quantum Inf. Comput..
[26] B. Roy Frieden,et al. Science from Fisher Information: A Unification , 2004 .
[27] Giuliano Benenti,et al. Quantum Computers, Algorithms and Chaos , 2006 .
[28] R. J. Sewell,et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit , 2010, Nature.
[29] Von Welch,et al. Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.
[30] R. Gill,et al. Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .
[31] Rafał Demkowicz-Dobrzański,et al. The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.
[32] Thomas G. Draper,et al. A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.
[33] Marcin Jarzyna,et al. True precision limits in quantum metrology , 2014, 1407.4805.
[34] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[35] Mankei Tsang,et al. Quantum theory of superresolution for two incoherent optical point sources , 2015, 1511.00552.
[36] A. S. Holevo,et al. Covariant measurements and imprimitivity systems , 1984 .
[37] Wolfgang Dur,et al. Algebraic metrology: Nonoptimal but pretty good states and bounds , 2015 .
[38] Markus Tiersch,et al. Estimation of coherent error sources from stabilizer measurements , 2015, 1512.07083.
[39] Isaac L. Chuang,et al. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.
[40] Pavel Sekatski,et al. Quantum metrology with full and fast quantum control , 2016, 1603.08944.
[41] P. Sekatski,et al. Quantum metrology for the Ising Hamiltonian with transverse magnetic field , 2015, 1502.06459.
[42] Jelmer J. Renema,et al. Erratum: Quantum Noise Limited and Entanglement-Assisted Magnetometry [Phys. Rev. Lett.104, 133601 (2010)] , 2010 .
[43] Carlton M. Caves,et al. In-situ characterization of quantum devices with error correction , 2014, 1405.5656.
[44] Nicol'as Quesada,et al. Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement , 2014, 1404.7110.
[45] Giulio Chiribella,et al. Covariant quantum measurements that maximize the likelihood , 2004, quant-ph/0403083.
[46] Stefano Mancini,et al. High-sensitivity force measurement using entangled probes , 2003 .
[47] L. Davidovich,et al. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.
[48] Sailes K. Sengijpta. Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .
[49] Wiseman,et al. Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.
[50] B. Kraus,et al. Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.
[51] R Raussendorf,et al. A one-way quantum computer. , 2001, Physical review letters.
[52] I. Chuang,et al. Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.
[53] K. Audenaert,et al. Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.
[54] H. M. Wiseman,et al. How to perform the most accurate possible phase measurements , 2009, 0907.0014.
[55] Rafal Demkowicz-Dobrzanski,et al. Quantum computation speedup limits from quantum metrological precision bounds , 2015 .
[56] Sergio Boixo,et al. Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.
[57] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[58] Moore,et al. Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[59] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[60] Jing Liu,et al. A search algorithm for quantum state engineering and metrology , 2015, 1511.05327.
[61] Robert RAUßENDORF. MEASUREMENT-BASED QUANTUM COMPUTATION WITH CLUSTER STATES , 2009 .
[62] G Chiribella,et al. Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.
[63] Christof Wunderlich,et al. Two-dimensional cluster-state preparation with linear ion traps , 2009, 0901.0881.
[64] P. Sekatski,et al. Dynamical decoupling leads to improved scaling in noisy quantum metrology , 2015, 1512.07476.
[65] Samuel L Braunstein,et al. Exponentially enhanced quantum metrology. , 2008, Physical review letters.
[66] Rafal Demkowicz-Dobrzanski,et al. Optimal phase estimation with arbitrary a priori knowledge , 2011, 1102.0786.
[67] E. Knill,et al. DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.
[68] S. Lloyd,et al. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.
[69] G. Tóth,et al. Quantum metrology from a quantum information science perspective , 2014, 1405.4878.
[70] Paola Cappellaro,et al. Composite-pulse magnetometry with a solid-state quantum sensor , 2012, Nature Communications.
[71] W. Marsden. I and J , 2012 .
[72] Edward H. Chen,et al. True Limits to Precision via Unique Quantum Probe , 2014 .
[73] Richard Cleve,et al. Fast parallel circuits for the quantum Fourier transform , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[74] Barenco,et al. Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[75] Barry C. Sanders,et al. Optimal quantum measurements for phase-shift estimation in optical interferometry , 1997 .
[76] Stefano Mancini,et al. Quantum limited force measurement in a cavityless optomechanical system (4 pages) , 2004 .
[77] J. Kołodyński,et al. Quantum limits in optical interferometry , 2014, 1405.7703.
[78] H. Cramér. Mathematical methods of statistics , 1947 .
[79] K. Jensen,et al. Quantum noise limited and entanglement-assisted magnetometry , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.
[80] Stefano Pirandola,et al. Ultimate precision of adaptive quantum metrology , 2016 .
[81] G. D’Ariano,et al. Optimal estimation of group transformations using entanglement , 2005, quant-ph/0506267.
[82] Steward D. Personick,et al. Application of quantum estimation theory to analog communication over quantum channels , 1971, IEEE Trans. Inf. Theory.
[83] J. Eisert,et al. Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.
[84] 王晓光,et al. Quantum Fisher Information for Density Matrices with Arbitrary Ranks , 2014 .
[85] H. Weinfurter,et al. Multiphoton entanglement and interferometry , 2003, 0805.2853.
[86] C. F. Roos,et al. Precision spectroscopy with two correlated atoms , 2007 .
[87] Einar Pius. Parallel quantum computing: from theory to practice , 2015 .
[88] Wineland,et al. Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.