Raman spectroscopy of hydrotalcites with sulphate, molybdate and chromate in the interlayer

Raman microscopy has been used to characterize the interlayer anions in synthesized hydrotalcites of formula Mg6Al2(OH)(16)(XO4)(.)4H(2)O, where X is S, Mo or Cr. The Raman spectrum shows that both the chromate and molybdate anions are not polymerized in the hydrotalcite interlayer. This lack of polymerization is attributed to the effect of pH during synthesis. A model of bonding is proposed for the interlayer anions based upon the observation of two symmetric stretching modes and symmetry lowering of the chromate, molybdate and sulphate anions. Two types of anions are present, hydrated and hydroxyl surface-bonded. Copyright (c) 2005 John Wiley & Sons, Ltd.

[1]  Peter A. Williams,et al.  Raman spectroscopic study of the basic copper sulphates-implications for copper corrosion and 'bronze disease' , 2003 .

[2]  J. Theo Kloprogge,et al.  Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite: implications for the study of copper, brass and bronze objects of archaeological significance , 2002 .

[3]  Peter A. Williams,et al.  Raman spectroscopy of the phase‐related basic copper arsenate minerals olivenite, cornwallite, cornubite and clinoclase , 2002 .

[4]  R. Frost,et al.  Infrared and Raman study of interlayer anions CO32–, NO3–, SO42– and ClO4– in Mg/Al-hydrotalcite , 2002 .

[5]  J. Moulijn,et al.  In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Co–Al and Ni–Al hydrotalcites , 2001 .

[6]  Y. Nakano,et al.  Removal of Phosphate in Dissolution-Coagulation Process of Layered Double Hydroxide , 2001 .

[7]  Y. Nakamura,et al.  Rapid removal of dilute lead from water by pyroaurite-like compound. , 2001, Water research.

[8]  J. Sueiras,et al.  Cu/Ni/Al layered double hydroxides as precursors of catalysts for the wet air oxidation of phenol aqueous solutions , 2001 .

[9]  S. Y. Lee,et al.  Incorporation of Radioactive Contaminants into Pyroaurite-Like Phases by Electrochemical Synthesis , 2000 .

[10]  K. Parida,et al.  Catalytic Ketonization of Acetic Acid on Zn/Al Layered Double Hydroxides , 2000 .

[11]  R. Frost,et al.  A Raman microscopic study of tungstate and molybdate minerals: Scheelite, wolframite and wulfenite , 1999 .

[12]  R. Frost,et al.  Infrared emission spectroscopic study of the thermal transformation of Mg-, Ni- and Co-hydrotalcite catalysts , 1999 .

[13]  E. Romeo,et al.  Acetylene hydrogenation on Ni–Al–Cr oxide catalysts: the role of added Zn , 1998 .

[14]  M. Lerner,et al.  Thermal Characterization of Poly(Styrene Sulfonate)/Layered Double Hydroxide Nanocomposites , 1997 .

[15]  M. Xanthos,et al.  Mechanisms and performance of hydrotalcite acid neutralizers in thermoplastics , 1995 .

[16]  C. Serna,et al.  Thermal stability of Ni, Al double hydroxides with various interlayer anions , 1984 .

[17]  R. Taylor Stabilization of colour and structure in the pyroaurite-type compounds Fe(II)Fe(III)Al(III)-hydroxycarbonates , 1982, Clay Minerals.

[18]  D. Bish,et al.  The crystal chemistry and paragenesis of honessite and hydrohonessite: the sulphate analogues of reevesite , 1981, Mineralogical Magazine.

[19]  E. Nickel,et al.  Hydrohonessite—a new hydrated Ni-Fe hydroxy-sulphate mineral; its relationship to honessite, carrboydite, and minerals of the pyroaurite group , 1981, Mineralogical Magazine.

[20]  E. Nickel,et al.  Carrboydite, a hydrated sulfate of nickel and aluminum; a new mineral from Western Australia , 1976 .

[21]  H. Taylor,et al.  Crystal structures of some double hydroxide minerals , 1973, Mineralogical Magazine.

[22]  R. Wilkins The Raman spectrum of crocoite , 1971, Mineralogical Magazine.

[23]  H. Taylor,et al.  Segregation and cation-ordering in sjögrenite and pyroaurite , 1969, Mineralogical Magazine.

[24]  R. Allmann The crystal structure of pyroaurite , 1968 .

[25]  G. Brown,et al.  Mixed magnesium-aluminium hydroxides. II. Structure and structural chemistry of synthetic hydroxycarbonates and related minerals and compounds , 1967, Clay Minerals.

[26]  Peter A. Williams,et al.  Raman spectroscopy of the molybdate minerals chillagite (tungsteinian wulfenite‐I4), stolzite, scheelite, wolframite and wulfenite , 2002 .

[27]  F. Kapteijn,et al.  A spectroscopic study of the effect of the trivalent cation on the thermal decomposition behaviour of Co-based hydrotalcites , 2001 .

[28]  A. Weiss,et al.  Thermal decomposition of Mg, Al-hydrotalcite material , 1993, Journal of Materials Science.

[29]  J. M. Rojo,et al.  Thermal decomposition of hydrotalcites. An infrared and nuclear magnetic resonance spectroscopic study , 1992 .

[30]  P. Dutta,et al.  Anion exchange in lithium aluminate hydroxides , 1989 .

[31]  V. Farmer The Infrared spectra of minerals , 1974 .

[32]  H. Taylor,et al.  The Crystal Structures of Sjögrenite and Pyroaurite , 1967 .