Evolution of neocortical folding: A phylogenetic comparative analysis of MRI from 34 primate species

We present a comparative analysis of cerebral size and neocortical folding. Magnetic resonance imaging data was collected from 54 individuals belonging to 33 different primate species. We measured several neocortical folding parameters and studied their evolution using phylogenetic comparative methods. Our results suggest that the most likely model is one where phenotypical differences vary randomly through evolution (the Brownian Motion model). We present estimations of the ancestral primate phenotypes as well as estimations of the rates of phenotypic change.

[1]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[2]  Daniel S. Margulies,et al.  An Open Resource for Non-human Primate Imaging , 2018, Neuron.

[3]  J. Lefévre,et al.  On the growth and form of cortical convolutions , 2016, Nature Physics.

[4]  P. David,et al.  Diversity spurs diversification in ecological communities , 2017, Nature Communications.

[5]  Ravi S. Menon,et al.  An open resource for nonhuman primate imaging , 2017, bioRxiv.

[6]  A. Boudaoud,et al.  Buckling of swelling gels , 2005, The European physical journal. E, Soft matter.

[7]  S. Herculano‐Houzel The Human Brain in Numbers: A Linearly Scaled-up Primate Brain , 2009, Front. Hum. Neurosci..

[8]  Hans J. Johnson,et al.  Advanced Normalization Tools (ANTs) , 2020 .

[9]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[10]  J. Felsenstein Maximum-likelihood estimation of evolutionary trees from continuous characters. , 1973, American journal of human genetics.

[11]  David R. Anderson,et al.  Multimodel Inference , 2004 .

[12]  Khundrakpam Budhachandra,et al.  The Neuro Bureau Preprocessing Initiative: open sharing of preprocessed neuroimaging data and derivatives , 2013 .

[13]  Roberto Toro,et al.  Role of mechanical morphogenesis in the development and evolution of the neocortex. , 2019, Physics of life reviews.

[14]  G. Müller Evo–devo: extending the evolutionary synthesis , 2007, Nature Reviews Genetics.

[15]  L L Cavalli-Sforza,et al.  Phylogenetic analysis. Models and estimation procedures. , 1967, American journal of human genetics.

[16]  Roberto Toro,et al.  Mechanical morphogenesis and the development of neocortical organisation , 2015, Cortex.

[17]  M. A. García-Cabezas,et al.  A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. , 2011, Cerebral cortex.

[18]  R. Lande NATURAL SELECTION AND RANDOM GENETIC DRIFT IN PHENOTYPIC EVOLUTION , 1976, Evolution; international journal of organic evolution.

[19]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[20]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[21]  A. Schleicher,et al.  The human pattern of gyrification in the cerebral cortex , 2004, Anatomy and Embryology.

[22]  Michael Eickenberg,et al.  Machine learning for neuroimaging with scikit-learn , 2014, Front. Neuroinform..

[23]  Gabriel Taubin,et al.  Curve and surface smoothing without shrinkage , 1995, Proceedings of IEEE International Conference on Computer Vision.

[24]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[26]  R. Freckleton,et al.  A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies , 2015, Biological journal of the Linnean Society. Linnean Society of London.

[27]  A. Schleicher,et al.  Gyrification in the cerebral cortex of primates. , 1989, Brain, behavior and evolution.

[28]  Michael S. Gazzaniga,et al.  Human: The Science Behind What Makes Us Unique , 2008 .

[29]  Chet C. Sherwood,et al.  Cortical development in brown capuchin monkeys: A structural MRI study , 2008, NeuroImage.

[30]  Yundi Shi,et al.  The UNC-Wisconsin Rhesus Macaque Neurodevelopment Database: A Structural MRI and DTI Database of Early Postnatal Development , 2017, Frontiers in neuroscience.

[31]  Luke J. Matthews,et al.  The 10kTrees website: A new online resource for primate phylogeny , 2010 .

[32]  K. Amunts,et al.  Individual variability is not noise , 2013, Trends in Cognitive Sciences.

[33]  Y. Burnod,et al.  A morphogenetic model for the development of cortical convolutions. , 2005, Cerebral cortex.

[34]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[35]  Jeroen B Smaers,et al.  How humans stand out in frontal lobe scaling , 2013, Proceedings of the National Academy of Sciences.

[36]  Federico De Martino,et al.  A scalable method to improve gray matter segmentation at ultra high field MRI , 2018, PloS one.

[37]  C. Waddington Canalization of Development and the Inheritance of Acquired Characters , 1942, Nature.

[38]  Juliane Dinse,et al.  A computational framework for ultra-high resolution cortical segmentation at 7Tesla , 2014, NeuroImage.

[39]  Christopher Rorden,et al.  The first step for neuroimaging data analysis: DICOM to NIfTI conversion , 2016, Journal of Neuroscience Methods.

[40]  Alex T. Kalinka,et al.  An Adaptive Threshold in Mammalian Neocortical Evolution , 2013, bioRxiv.

[41]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[42]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[43]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[44]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[45]  Chris Venditti,et al.  Human frontal lobes are not relatively large , 2013, Proceedings of the National Academy of Sciences.

[46]  H. Frahm,et al.  Comparison of brain structure volumes in Insectivora and Primates. I. Neocortex. , 1982, Journal fur Hirnforschung.

[47]  Roberto Toro,et al.  On the Possible Shapes of the Brain , 2012, Evolutionary Biology.

[48]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[49]  Chet C. Sherwood,et al.  Exceptional Evolutionary Expansion of Prefrontal Cortex in Great Apes and Humans , 2017, Current Biology.

[50]  J. Bruggeman,et al.  Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within‐species variation , 2017 .

[51]  P. Schoenemann,et al.  Prefrontal white matter volume is disproportionately larger in humans than in other primates , 2005, Nature Neuroscience.

[52]  C. Nunn,et al.  Comparative methods for studying primate adaptation and allometry , 2001 .

[53]  K. Amunts,et al.  Primate Prefrontal Cortex Evolution: Human Brains Are the Extreme of a Lateralized Ape Trend , 2011, Brain, Behavior and Evolution.

[54]  Barbara R. Holland,et al.  Analysis of Phylogenetics and Evolution with R , 2007 .

[55]  J. Sundsten,et al.  Folding of the Cerebral Cortex in Mammals , 1984 .

[56]  Mark W. Woolrich,et al.  FSL , 2012, NeuroImage.

[57]  Satrajit S. Ghosh,et al.  Open Neuroimaging Laboratory , 2016 .

[58]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[59]  H. Frahm,et al.  Comparison of brain structure volumes in Insectivora and primates. VII. Amygdaloid components. , 1987, Journal fur Hirnforschung.

[60]  Jong-Min Lee,et al.  Automated Sulcal Depth Measurement on Cortical Surface Reflecting Geometrical Properties of Sulci , 2013, PloS one.

[61]  Camino de Juan Romero,et al.  Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly , 2015, The EMBO journal.

[62]  H. Damasio,et al.  Humans and great apes share a large frontal cortex , 2002, Nature Neuroscience.

[63]  K. Baumann Cell migration: Invasion of the pseudopods , 2007, Nature Reviews Molecular Cell Biology.

[64]  C. Nunn,et al.  Quantitative uniqueness of human brain evolution revealed through phylogenetic comparative analysis , 2019, eLife.

[65]  Bruno Mota,et al.  Cortical folding scales universally with surface area and thickness, not number of neurons , 2015, Science.

[66]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  T. Tallinen,et al.  Gyrification from constrained cortical expansion , 2014, Proceedings of the National Academy of Sciences.

[68]  Olivier Coulon,et al.  The average baboon brain: MRI templates and tissue probability maps from 89 individuals , 2016, NeuroImage.

[69]  T. Insel,et al.  The primate neocortex in comparative perspective using magnetic resonance imaging. , 1999, Journal of human evolution.

[70]  Roger P. Woods,et al.  Anatomic Brain Asymmetry in Vervet Monkeys , 2011, PloS one.

[71]  R. Barton,et al.  Reply to Smaers: Getting human frontal lobes in proportion , 2013, Proceedings of the National Academy of Sciences.

[72]  J. L. Gittleman,et al.  EARLY BURSTS OF BODY SIZE AND SHAPE EVOLUTION ARE RARE IN COMPARATIVE DATA , 2010, Evolution; international journal of organic evolution.

[73]  Comment on “Cortical folding scales universally with surface area and thickness, not number of neurons” , 2016, Science.

[74]  Comment on “Cortical folding scales universally with surface area and thickness, not number of neurons” , 2016, Science.

[75]  C. Nunn The Comparative Approach in Evolutionary Anthropology and Biology , 2011 .

[76]  H. Frahm,et al.  New and revised data on volumes of brain structures in insectivores and primates. , 1981, Folia primatologica; international journal of primatology.

[77]  Pierre-Louis Bazin,et al.  Topology correction of segmented medical images using a fast marching algorithm , 2007, Comput. Methods Programs Biomed..