Reasoning with imperfect information

Publisher Summary Handling imperfect information is a crucial problem for any intelligent system that has to deal with the real world. Many proposals have been put forward to solve this problem. This chapter investigates some of the most important of these proposals and, discusses their advantages, limitations, and interrelationships. It also provides some examples of their relevance in building intelligent systems. This chapter focuses on the three main numerical methods: probability theory, evidence theory, and possibility theory. It also discusses three main symbolic methods: circumscription, default logic, and autoepistemic logic. The chapter contains descriptions of some of the more intriguing lesser models. This chapter suggests reasons for the introduction of the more novel techniques and lays out the technical differences between the approaches. The majority of the techniques suggested to handle information that is certain but incomplete have been symbolic—often being variations of first order or prepositional logic.Such techniques involve making assumptions to complete what is known. The bulk of the techniques for handling complete but uncertain information are basically numerical. This chapter also describes the relationships between techniques and within their genres. It closes with a discussion on applications of these techniques.

[1]  Bruce Abramson ARCO1: An Application of Belief Networks to the Oil Market , 1991, UAI.

[2]  Grigoris Antoniou,et al.  A tutorial on default reasoning , 1998, The Knowledge Engineering Review.

[3]  Paul R. Cohen,et al.  Heuristic reasoning about uncertainty: an artificial intelligence approach , 1984 .

[4]  Drew McDermott,et al.  Nonmonotonic Logic II: Nonmonotonic Modal Theories , 1982, JACM.

[5]  Glenn Shafer,et al.  Comments on An inquiry into computer understanding by Peter Cheeseman , 1988, Comput. Intell..

[6]  Kathryn B. Laskey,et al.  Assumptions, Beliefs and Probabilities , 1989, Artif. Intell..

[7]  Phan Minh Dung,et al.  An Abstract, Argumentation-Theoretic Approach to Default Reasoning , 1997, Artif. Intell..

[8]  Matthew L. Ginsberg,et al.  Multivalued logics: a uniform approach to reasoning in artificial intelligence , 1988, Comput. Intell..

[9]  Edward H. Shortliffe,et al.  A Method for Managing Evidential Reasoning in a Hierarchical Hypothesis Space , 1985, Artif. Intell..

[10]  Eric Neufeld,et al.  Towards solving the multiple extension problem: Combining defaults and probabilities , 1987, Int. J. Approx. Reason..

[11]  T Chard,et al.  Qualitative Probability versus Quantitative Probability in Clinical Diagnosis , 1991, Medical decision making : an international journal of the Society for Medical Decision Making.

[12]  Gerard Vreeswijk,et al.  Abstract Argumentation Systems , 1997, Artif. Intell..

[13]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[14]  Prakash P. Shenoy,et al.  Axioms for probability and belief-function proagation , 1990, UAI.

[15]  Rudolf Kruse,et al.  The context model: An integrating view of vagueness and uncertainty , 1993, Int. J. Approx. Reason..

[16]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[17]  David W. Etherington Reasoning With Incomplete Information , 1988 .

[18]  David J. Israel Some remarks on the place of logic in knowledge representation , 1987 .

[19]  J. Ross Quinlan,et al.  Inferno: A Cautious Approach To Uncertain Inference , 1986, Comput. J..

[20]  Keith L. Clark,et al.  Negation as Failure , 1987, Logic and Data Bases.

[21]  Victor W. Marek,et al.  Relating Autoepistemic and Default Logics , 1989, KR.

[22]  Judea Pearl,et al.  Convince: A Conversational Inference Consolidation Engine , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Alessandro Saffiotti,et al.  An AI view of the treatment of uncertainty , 1987, The Knowledge Engineering Review.

[24]  Didier Dubois,et al.  Automated Reasoning Using Possibilistic Logic: Semantics, Belief Revision, and Variable Certainty Weights , 1994, IEEE Trans. Knowl. Data Eng..

[25]  Pierre Siegel,et al.  Saturation, Nonmonotonic Reasoning and the Closed-World Assumption , 1985, Artif. Intell..

[26]  Arthur P. Dempster,et al.  Comments on An inquiry into computer understanding by Peter Cheeseman , 1988, Comput. Intell..

[27]  Christine Froidevaux,et al.  Graded Default Theories for Uncertainty , 1990, ECAI.

[28]  John Fox,et al.  Three Arguments for Extending the Framework of Probability , 1985, UAI.

[29]  Didier Dubois,et al.  A Possibilistic Assumption-Based Truth Maintenance System with Uncertain Justifications, and its Application to Belief Revision , 1990, Truth Maintenance Systems.

[30]  J. Fox,et al.  Knowledge acquisition for expert systems: experience in leukaemia diagnosis. , 1985, Methods of information in medicine.

[31]  Alessandro Saffiotti A Hybrid Framework for Representing Uncertain Knowledge , 1990, AAAI.

[32]  D. Dubois,et al.  Fuzzy sets in approximate reasoning, part 2: logical approaches , 1991 .

[33]  Steen Andreassen,et al.  MUNIN - A Causal Probabilistic Network for Interpretation of Electromyographic Findings , 1987, IJCAI.

[34]  Gerhard Brewka,et al.  Tweety - Still Flying: Some Remarks on Abnormal Birds Applicable Rules and a Default Prover , 1986, AAAI.

[35]  Didier Dubois,et al.  Towards Possibilistic Logic Programming , 1991, ICLP.

[36]  Witold Lukaszewlcz Two results on default logic , 1985, IJCAI 1985.

[37]  Witold Łukaszewicz Considerations on default logic: an alternative approach 1 , 1988 .

[38]  Jeffrey A. Barnett,et al.  Computational Methods for a Mathematical Theory of Evidence , 1981, IJCAI.

[39]  Nic Wilson,et al.  Default Logic and Dempster-Shafer Theory , 1993, ECSQARU.

[40]  Simon Parsons,et al.  A review of uncertainty handling formalisms , 1998, Applications of Uncertainty Formalisms.

[41]  David J. Spiegelhalter,et al.  A Bayesian expert system for the analysis of an adverse drug reaction , 1991, Artif. Intell. Medicine.

[42]  Dominic A. Clark,et al.  Numerical and symbolic approaches to uncertainty management in AI , 1990, Artificial Intelligence Review.

[43]  Didier Dubois,et al.  Updating with belief functions, ordinal conditional functions and possibility measures , 1990, UAI.

[44]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[45]  Kurt Konolige,et al.  On the Relation Between Autoepistem ic Logic and Circumscription , 1989, IJCAI.

[46]  Kurt Konolige,et al.  Representing defaults with epistemic concepts , 1989, Comput. Intell..

[47]  Glenn Shafer,et al.  Evidential Reasoning Using DELEF , 1988, AAAI.

[48]  Didier Dubois,et al.  Theorem Proving Under Uncertainty - A Possibility Theory-based Approach , 1987, IJCAI.

[49]  Philippe Smets,et al.  Default reasoning and the transferable belief model , 1990, UAI.

[50]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[51]  Raymond Reiter,et al.  On Interacting Defaults , 1981, IJCAI.

[52]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[53]  Didier Dubois,et al.  Necessity Measures and the Resolution Principle , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[54]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[55]  Edward H. Shortliffe,et al.  Computer-based medical consultations, MYCIN , 1976 .

[56]  Kurt Konolige,et al.  On the Relation Between Default and Autoepistemic Logic , 1987, Artif. Intell..

[57]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[58]  Dominic A. Clark,et al.  Representing uncertain knowledge - an artificial intelligence approach , 1993 .

[59]  Didier Dubois,et al.  Modelling uncertainty and inductive inference: A survey of recent non-additive probability systems , 1988 .

[60]  Fangzhen Lin,et al.  Argument Systems: A Uniform Basis for Nonmonotonic Reasoning , 1989, KR.

[61]  John Fox,et al.  A LOGIC OF ARGUMENTATION FOR REASONING UNDER UNCERTAINTY , 1995, Comput. Intell..

[62]  Alessandro Saffiotti,et al.  Pulcinella: A General Tool for Propagating Uncertainty in Valuation Networks , 1991, UAI.

[63]  Peter C. Cheeseman,et al.  An inquiry into computer understanding , 1988, Comput. Intell..

[64]  G. L. S. Shackle,et al.  Decision Order and Time in Human Affairs , 1962 .

[65]  Eric Horvitz,et al.  A Framework for Comparing Alternative Formalisms for Plausible Reasoning , 1986, AAAI.

[66]  Kristian G. Olesen,et al.  HUGIN - A Shell for Building Bayesian Belief Universes for Expert Systems , 1989, IJCAI.

[67]  Jon Doyle,et al.  A Truth Maintenance System , 1979, Artif. Intell..

[68]  Philippe Smets,et al.  The Transferable Belief Model , 1994, Artif. Intell..

[69]  Gregory M. Provan,et al.  An Experimental Comparison of Numerical and Qualitative Probabilistic Reasoning , 1994, UAI.

[70]  Yoav Shoham,et al.  Nonmonotonic Logics: Meaning and Utility , 1987, IJCAI.

[71]  Grigori Schwarz On Embedding Default Logic into Moore's Autoepistemic Logic , 1996, Artif. Intell..

[72]  Rudolf Kruse,et al.  A New Approach to Semantic Aspects of Possibilistic Reasoning , 1993, ECSQARU.

[73]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[74]  Didier Dubois,et al.  A Tentative Comparison of Numerical Approximate Reasoning Methodologies , 1987, Int. J. Man Mach. Stud..

[75]  D. Dubois,et al.  Fuzzy sets in approximate reasoning, part 1: inference with possibility distributions , 1999 .

[76]  Max Henrion,et al.  A Framework for Comparing Uncertain Inference Systems to Probability , 1985, UAI.

[77]  Tomasz Imielinski,et al.  Results on Translating Defaults to Circumscription , 1985, IJCAI.

[78]  Elizabeth C. Hirschman,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[79]  Didier Dubois,et al.  Resolution principles in possibilistic logic , 1990, Int. J. Approx. Reason..

[80]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[81]  A. Saffiotti,et al.  Inference-Driven Construction of Valuation Systems from First-Order Clauses , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[82]  Matthew L. Ginsberg A Circumscriptive Theorem Prover , 1989, Artif. Intell..

[83]  D. Dubois,et al.  Fuzzy sets in approximate reasoning. I, Inference with possibility distributions , 1991 .

[84]  Drew McDermott,et al.  Non-Monotonic Logic I , 1987, Artif. Intell..

[85]  Nic Wilson,et al.  Fast Markov Chain Algorithms for Calculating Dempster-Shafer Belief , 1996, ECAI.

[86]  Henri Prade,et al.  Representation and combination of uncertainty with belief functions and possibility measures , 1988, Comput. Intell..

[87]  Patrice Quinton,et al.  A Theorem-Prover for a Decidable Subset of Default Logic , 1983, AAAI.

[88]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[89]  David Poole,et al.  A Logical Framework for Default Reasoning , 1988, Artif. Intell..

[90]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[91]  Gregory M. Provan,et al.  The Sensitivity of Belief Networks to Imprecise Probabilities: An Experimental Investigation , 1996, Artif. Intell..

[92]  Vladimir Lifschitz,et al.  Pointwise Circumscription: Preliminary Report , 1986, AAAI.

[93]  Robert C. Moore Semantical Considerations on Nonmonotonic Logic , 1985, IJCAI.

[94]  Anthony Hunter,et al.  Uncertainty in Information Systems , 1997 .