Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca2+-activated K+ conductance

SummaryIntracellular recording techniques were used to study the effects of apamin (APA), a selective inhibitor of one type of Ca2+-activated K+ channel, on the electroresponsive properties of dopamine (DA)-containing neurons within the zona compacta of the substantia nigra (SNc) in rat. Bath application of APA (1 μM) blocked the slow component of a complex post-spike afterhyperpolarization (AHPs) without affecting other characteristics of the action potential. Blockade of AHPs was accompanied by an increase in the number and frequency of action potentials evoked by depolarizing current pulses. However, APA failed to affect the cellular mechanisms underlying spike frequency adaptation or poststimulus inhibitory period. These data indicate that AHPs can exert a strong influence on the interspike interval but is probably not involved in regulating slower adaptive neuronal responses.

[1]  B. Bunney,et al.  Intracellular studies of dopamine neurons in vitro: pacemakers modulated by dopamine. , 1988, European journal of pharmacology.

[2]  A. Grace,et al.  Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—1. Identification and characterization , 1983, Neuroscience.

[3]  M. Lazdunski,et al.  Properties of the apamin-sensitive Ca2+-activated K+ channel in PC12 pheochromocytoma cells which hyper-produce the apamin receptor. , 1986, The Journal of biological chemistry.

[4]  M. Watanabe,et al.  Blockade of Ca‐activated K conductance by apamin in rat sympathetic neurones , 1986, British journal of pharmacology.

[5]  K. Koyano,et al.  Differential effects of apamin on Ca2+-dependent K+ currents in bullfrog sympathetic ganglion cells , 1986, Neuroscience Letters.

[6]  R. Harris-Warrick,et al.  Multiple mechanisms of bursting in a conditional bursting neuron , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  R Llinás,et al.  Long-term modifiability of anomalous and delayed rectification in guinea pig inferior olivary neurons , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  T. Kita,et al.  Electrical membrane properties of rat substantia nigra compacta neurons in an in vitro slice preparation , 1986, Brain Research.

[9]  Charles D. Woody,et al.  Intracellular injection of apamin reduces a slow potassium current mediating afterhyperpolarizations and IPSPs in neocortical neurons of cats , 1988, Brain Research.

[10]  M. Deschenes,et al.  Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. , 1985, Journal of neurophysiology.

[11]  R. Llinás,et al.  Electrophysiology of pars compacta cells in the in vitro substantia nigra—a possible mechanism for dendritic release , 1984, Brain Research.

[12]  P. Schwindt,et al.  Anomalous rectification in neurons from cat sensorimotor cortex in vitro. , 1987, Journal of neurophysiology.

[13]  D. German,et al.  Electrophysiological and pharmacological evidence for the existence of distinct subpopulations of nigrostriatal dopaminergic neuron in the rat , 1988, Neuroscience.

[14]  Bruce R. Johnson,et al.  Potassium channel blockade induces rhythmic activity in a conditional burster neuron , 1987, Brain Research.

[15]  Y. Matsuda,et al.  Two types of neurons in the substantia nigra pars compacta studied in a slice preparation , 1987, Neuroscience Research.

[16]  A. Grace,et al.  The control of firing pattern in nigral dopamine neurons: burst firing , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  Paul R. Adams,et al.  Voltage-clamp analysis of muscarinic excitation in hippocampal neurons , 1982, Brain Research.

[18]  R. Nicoll,et al.  Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Y. Matsuda,et al.  Responses to ramp current stimulation of the neurons in substantia nigra pars compacta in vitro , 1988, Brain Research.

[20]  P. Finlayson,et al.  Synchronous bursting of locus coeruleus neurons in tissue culture , 1988, Neuroscience.

[21]  I. Cooke,et al.  Driver potentials and the organization of rhythmic bursting in crustacean ganglia , 1984, Trends in Neurosciences.

[22]  M. Sanghera,et al.  Electrophysiological properties of mouse dopamine neurons: In vivo and in vitro studies , 1984, Neuroscience.

[23]  A. Marty,et al.  The physiological role of calcium-dependent channels , 1989, Trends in Neurosciences.

[24]  L. Renaud,et al.  Calcium-dependent potassium conductance in rat supraoptic nucleus neurosecretory neurons. , 1985, Journal of neurophysiology.

[25]  A. Grace,et al.  The control of firing pattern in nigral dopamine neurons: single spike firing , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  N. Mercuri,et al.  Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. , 1987, The Journal of physiology.

[27]  K. Krnjević,et al.  Apamin depresses selectively the after-hyperpolarization of cat spinal motoneurons , 1987, Neuroscience Letters.

[28]  A. Grace,et al.  Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—2. Action potential generating mechanisms and morphological correlates , 1983, Neuroscience.

[29]  S. Kelso,et al.  A slice chamber for intracellular and extracellular recording during continuous perfusion , 1983, Brain Research Bulletin.

[30]  D. A. Brown,et al.  Apamin and d-tubocurarine block the after-hyperpolarization of rat supraoptic neurosecretory neurons , 1987, Neuroscience Letters.

[31]  K. Magleby,et al.  Calcium-activated potassium channels , 1987, Trends in Neurosciences.

[32]  P. Schwindt,et al.  Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. , 1988, Journal of neurophysiology.

[33]  G. Bernardi,et al.  Morphine induces a spontaneous and evoked bursting activity in rat cortical neurons by adding a postsynaptic active mechanism to the synaptic input: An intracellular study In vivo , 1988, Neuroscience.

[34]  E. Barrett,et al.  Separation of two voltage‐sensitive potassium currents, and demonstration of a tetrodotoxin‐resistant calcium current in frog motoneurones. , 1976, The Journal of physiology.

[35]  B. Bunney,et al.  Effects of apamin on the discharge properties of putative dopamine-containing neurons in vitro , 1988, Brain Research.

[36]  J. Barker,et al.  Postnatal rat nigrostriatal dopaminergic neurons exhibit five types of potassium conductances. , 1990, Journal of neurophysiology.

[37]  R. Nicoll,et al.  Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. , 1984, The Journal of physiology.

[38]  J. Bargas,et al.  The role of calcium in the repetitive firing of neostriatal neurons , 2004, Experimental Brain Research.

[39]  S. A. Shefner,et al.  Functional significance of the apamin-sensitive conductance in rat locus coeruleus neurons , 1990, Brain Research.

[40]  J. T. Williams,et al.  Membrane properties of rat locus coeruleus neurones , 1984, Neuroscience.

[41]  A. K. Ritchie Two distinct calcium‐activated potassium currents in a rat anterior pituitary cell line. , 1987, The Journal of physiology.

[42]  M. Lazdunski,et al.  Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Lazdunski,et al.  The apamin-sensitive Ca2+-dependent K+ channel molecular properties, differentiation and endogenous ligands in mammalian brain. , 1985, Biochemical Society symposium.

[44]  R. Nicoll,et al.  Properties of two calcium‐activated hyperpolarizations in rat hippocampal neurones. , 1987, The Journal of physiology.

[45]  K. Magleby,et al.  Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle , 1986, Nature.

[46]  G. Aghajanian,et al.  Locus coeruleus activity in vitro: intrinsic regulation by a calcium- dependent potassium conductance but not alpha 2-adrenoceptors , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  M. Lazdunski,et al.  Quantitative autoradiographic mapping in rat brain of the receptor of apamin, a polypeptide toxin specific for one class of Ca2+-dependent K+ channels , 1986, Brain Research.

[48]  R. Meech,et al.  Calcium-dependent potassium activation in nervous tissues. , 1978, Annual review of biophysics and bioengineering.

[49]  A. Grace,et al.  Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  G. Aghajanian,et al.  Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices , 1989, Synapse.

[51]  N. C. Harris,et al.  A possible pacemaker mechanism in pars compacta neurons of the guinea-pig substantia nigra revealed by various ion channel blocking agents , 1989, Neuroscience.