Convergence and quasi-optimality of an adaptive finite element method for elliptic Robin boundary control problem
暂无分享,去创建一个
Yue Shen | Ningning Yan | Zhaojie Zhou | Zhaojie Zhou | N. Yan | Yue Shen
[1] Wenbin Liu,et al. A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..
[2] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..
[3] Shipeng Mao,et al. Quasi-optimality of an Adaptive Finite Element Method for an Optimal Control Problem , 2011, Comput. Methods Appl. Math..
[4] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[5] Jean-Pierre Raymond,et al. ESTIMATES FOR THE NUMERICAL APPROXIMATION OF DIRICHLET BOUNDARY CONTROL FOR SEMILINEAR ELLIPTIC EQUATIONS , 2006 .
[6] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[7] Arnd Rösch,et al. Finite element error estimates for Neumann boundary control problems on graded meshes , 2011, Computational Optimization and Applications.
[8] Faker Ben Belgacem,et al. Singular perturbation for the Dirichlet boundary control of elliptic problems , 2003 .
[9] Rob P. Stevenson,et al. An Optimal Adaptive Finite Element Method , 2004, SIAM J. Numer. Anal..
[10] ROB STEVENSON,et al. The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..
[11] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[12] S. Agmon. Lectures on Elliptic Boundary Value Problems , 1965 .
[13] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[14] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[15] Rolf Rannacher,et al. Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..
[16] Wenbin Liu,et al. Local A Posteriori Error Estimates for Convex Boundary Control Problems , 2009, SIAM J. Numer. Anal..
[17] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[18] Ronald H. W. Hoppe,et al. Convergence Analysis of an Adaptive Finite Element Method for Distributed Control Problems with Control Constraints , 2007 .
[19] J. Lions. Optimal Control of Systems Governed by Partial Differential Equations , 1971 .
[20] Konstantinos Chrysafinos,et al. Error Estimates for Discontinuous Galerkin Time-Stepping Schemes for Robin Boundary Control Problems Constrained to Parabolic PDEs , 2014, SIAM J. Numer. Anal..
[21] Wenbin Liu,et al. A Posteriori Error Estimates for Control Problems Governed by Stokes Equations , 2002, SIAM J. Numer. Anal..
[22] Jean-Pierre Raymond,et al. Penalization of Dirichlet optimal control problems , 2009 .
[23] Kunibert G. Siebert,et al. Convergence of Adaptive Finite Elements for Optimal Control Problems with Control Constraints , 2014 .
[24] Wei Gong,et al. Adaptive finite element method for elliptic optimal control problems: convergence and optimality , 2015, Numerische Mathematik.
[25] Yanping Chen,et al. Convergence and quasi-optimality of an adaptive finite element method for optimal control problems with integral control constraint , 2018, Adv. Comput. Math..
[26] Kunibert G. Siebert,et al. A Posteriori Error Analysis of Optimal Control Problems with Control Constraints , 2014, SIAM J. Control. Optim..
[27] Zhaojie Zhou. A posteriori error estimates for discontinuous Galerkin approximation of non-stationary convection-diffusion optimal control problems , 2016, Int. J. Comput. Math..
[28] Eduardo Casas,et al. Error estimates for the numerical approximation of Neumann control problems , 2008, Comput. Optim. Appl..
[29] Zhaojie Zhou,et al. Local discontinuous galerkin approximation of convection‐dominated diffusion optimal control problems with control constraints , 2014 .
[30] Fredi Tröltzsch,et al. Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems , 2005, Comput. Optim. Appl..
[31] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[32] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[33] Arnd Rösch,et al. On saturation effects in the Neumann boundary control of elliptic optimal control problems , 2007, Comput. Optim. Appl..
[34] Jia Feng,et al. An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..
[35] S. Ravindran,et al. A Penalized Neumann Control Approach for Solving an Optimal Dirichlet Control Problem for the Navier--Stokes Equations , 1998 .
[36] P. Grisvard. Singularities in Boundary Value Problems , 1992 .
[37] Michael Hinze,et al. A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..