Evolutionarily Stable Association of Intronic snoRNAs and microRNAs with Their Host Genes

Small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) are integral to a range of processes, including ribosome biogenesis and gene regulation. Some are intron encoded, and this organization may facilitate coordinated coexpression of host gene and RNA. However, snoRNAs and miRNAs are known to be mobile, so intron-RNA associations may not be evolutionarily stable. We have used genome alignments across 11 mammals plus chicken to examine positional orthology of snoRNAs and miRNAs and report that 21% of annotated snoRNAs and 11% of miRNAs are positionally conserved across mammals. Among RNAs traceable to the bird–mammal common ancestor, 98% of snoRNAs and 76% of miRNAs are intronic. Comparison of the most evolutionarily stable mammalian intronic snoRNAs with those positionally conserved among primates reveals that the former are more overrepresented among host genes involved in translation or ribosome biogenesis and are more broadly and highly expressed. This stability is likely attributable to a requirement for overlap between host gene and intronic snoRNA expression profiles, consistent with an ancestral role in ribosome biogenesis. In contrast, whereas miRNA positional conservation is comparable to that observed for snoRNAs, intronic miRNAs show no obvious association with host genes of a particular functional category, and no statistically significant differences in host gene expression are found between those traceable to mammalian or primate ancestors. Our results indicate evolutionarily stable associations of numerous intronic snoRNAs and miRNAs and their host genes, with probable continued diversification of snoRNA function from an ancestral role in ribosome biogenesis.

[1]  J. Mattick The Genetic Signatures of Noncoding RNAs , 2009, PLoS genetics.

[2]  A. Brivanlou,et al.  The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection. , 2009, Developmental cell.

[3]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[4]  S. Blair Hedges,et al.  The origin and evolution of model organisms , 2002, Nature Reviews Genetics.

[5]  Michel J. Weber,et al.  Correction: Mammalian Small Nucleolar RNAs Are Mobile Genetic Elements , 2007, PLoS Genetics.

[6]  J. Brosius,et al.  Modern genomes with retro-look: retrotransposed elements, retroposition and the origin of new genes. , 2007, Genome dynamics.

[7]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[8]  J. Mattick Non‐coding RNAs: the architects of eukaryotic complexity , 2001, EMBO reports.

[9]  S. Batzoglou,et al.  Distribution and intensity of constraint in mammalian genomic sequence. , 2005, Genome research.

[10]  A. Meyerhans,et al.  The La‐related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes , 2008, EMBO reports.

[11]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[12]  T. Kiss Small Nucleolar RNAs An Abundant Group of Noncoding RNAs with Diverse Cellular Functions , 2002, Cell.

[13]  F. Cecconi,et al.  Comparative Structure Analysis of Vertebrate U17 Small Nucleolar RNA (snoRNA) , 2002, Journal of Molecular Evolution.

[14]  A. Schier,et al.  Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by miR-430 , 2007, Science.

[15]  N. Jahchan,et al.  A La-related protein modulates 7SK snRNP integrity to suppress P-TEFb-dependent transcriptional elongation and tumorigenesis. , 2008, Molecular cell.

[16]  D. Tollervey,et al.  Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. , 1998, Trends in biochemical sciences.

[17]  Jürgen Brosius,et al.  Evolution of small nucleolar RNAs in nematodes , 2006, Nucleic acids research.

[18]  Jian Lu,et al.  The birth and death of microRNA genes in Drosophila , 2008, Nature Genetics.

[19]  X. Darzacq,et al.  Nucleolar Factors Direct the 2′-O-Ribose Methylation and Pseudouridylation of U6 Spliceosomal RNA , 1999, Molecular and Cellular Biology.

[20]  J. Mattick,et al.  Molecular evolution of the HBII-52 snoRNA cluster. , 2008, Journal of molecular biology.

[21]  R. Sachidanandam,et al.  Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs , 2009, Nature.

[22]  F. Slack,et al.  Small non-coding RNAs in animal development , 2008, Nature Reviews Molecular Cell Biology.

[23]  J. Steitz,et al.  Guided tours: from precursor snoRNA to functional snoRNP. , 1999, Current opinion in cell biology.

[24]  A. Hüttenhofer,et al.  The expanding snoRNA world. , 2002, Biochimie.

[25]  A. Bradley,et al.  Identification of mammalian microRNA host genes and transcription units. , 2004, Genome research.

[26]  J. Cavaille,et al.  Non‐coding RNAs in imprinted gene clusters , 2008, Biology of the cell.

[27]  J. Steitz,et al.  A mammalian gene with introns instead of exons generating stable RNA products , 1996, Nature.

[28]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[29]  H. Satoh,et al.  Human and mouse protein-noncoding snoRNA host genes with dissimilar nucleotide sequences show chromosomal synteny. , 2007, RNA.

[30]  Sam Griffiths-Jones,et al.  Annotating noncoding RNA genes. , 2007, Annual review of genomics and human genetics.

[31]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[32]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[33]  T. Speed,et al.  GOstat: find statistically overrepresented Gene Ontologies within a group of genes. , 2004, Bioinformatics.

[34]  E. Enerly,et al.  Evolutionary profiling of the U49 snoRNA gene. , 2003, Hereditas.

[35]  B. Montanini,et al.  Eukaryotic snoRNAs: a paradigm for gene expression flexibility. , 2009, Genomics.

[36]  Jürgen Brosius,et al.  Retroposed SNOfall--a mammalian-wide comparison of platypus snoRNAs. , 2008, Genome research.

[37]  Andrew M. Jenkinson,et al.  Ensembl 2009 , 2008, Nucleic Acids Res..

[38]  R. Ketting Semiconserved regulation of mesendoderm differentiation by microRNAs. , 2009, Developmental cell.

[39]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Eddy Non–coding RNA genes and the modern RNA world , 2001, Nature Reviews Genetics.

[41]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[42]  Laurent Lestrade,et al.  snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs , 2005, Nucleic Acids Res..

[43]  D. Penny,et al.  An Overview of the Introns-First Theory , 2009, Journal of Molecular Evolution.

[44]  Liang-Hu Qu,et al.  snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome , 2006, Nucleic acids research.

[45]  J. Mattick Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[46]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[47]  Sam Griffiths-Jones,et al.  miRBase: the microRNA sequence database. , 2006, Methods in molecular biology.

[48]  S. Eddy,et al.  Homologs of small nucleolar RNAs in Archaea. , 2000, Science.

[49]  Michel J. Weber,et al.  Mammalian Small Nucleolar RNAs Are Mobile Genetic Elements , 2006, PLoS genetics.

[50]  S. Stamm,et al.  The snoRNA HBII-52 Regulates Alternative Splicing of the Serotonin Receptor 2C , 2006, Science.

[51]  John W. S. Brown,et al.  Intronic noncoding RNAs and splicing. , 2008, Trends in plant science.

[52]  Tamás Kiss,et al.  Cajal body‐specific small nuclear RNAs: a novel class of 2′‐O‐methylation and pseudouridylation guide RNAs , 2002, The EMBO journal.

[53]  Kate E. Jones,et al.  The delayed rise of present-day mammals , 1990, Nature.

[54]  W. L. Ruzzo,et al.  MicroRNA Discovery and Profiling in Human Embryonic Stem Cells by Deep Sequencing of Small RNA Libraries , 2008, Stem cells.

[55]  T. Kiss,et al.  A small nucleolar guide RNA functions both in 2′‐O‐ribose methylation and pseudouridylation of the U5 spliceosomal RNA , 2001, The EMBO journal.

[56]  S. Wyman,et al.  Repertoire of microRNAs in Epithelial Ovarian Cancer as Determined by Next Generation Sequencing of Small RNA cDNA Libraries , 2009, PloS one.

[57]  J. Bachellerie,et al.  Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-O-ribose methylation of rRNAs. , 1996, Journal of molecular biology.

[58]  J. Steitz,et al.  Splicing-dependent and -independent modes of assembly for intron-encoded box C/D snoRNPs in mammalian cells. , 2003, Molecular cell.

[59]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[60]  Philip C. J. Donoghue,et al.  MicroRNAs and the advent of vertebrate morphological complexity , 2008, Proceedings of the National Academy of Sciences.