Incommensurability In Mathematics
暂无分享,去创建一个
[1] Michael Hallett. Cantorian set theory and limitation of size , 1984 .
[2] M. Leng,et al. Platonism and Anti-Platonism in Mathematics , 2001 .
[3] Cantor. Ueber unendliche, lineare Punktmannichfaltigkeiten. 5. Fortsetzung. , 1883 .
[4] T. Kuhn,et al. The Structure of Scientific Revolutions. , 1964 .
[5] Imre Lakatos,et al. Cauchy and the continuum , 1978 .
[6] The Metaphysics of the Calculus , 1967 .
[7] Bas C. van Fraassen,et al. The Scientific Image , 1980 .
[8] I. Lakatos,et al. Mathematics, science and epistemology: What does a mathematical proof prove? , 1978 .
[9] Gregory H. Moore. Zermelo's Axiom of Choice: Its Origins, Development, and Influence , 1982 .
[10] I. Lakatos. PROOFS AND REFUTATIONS (I)*† , 1963, The British Journal for the Philosophy of Science.
[11] Paul R. Halmos,et al. Invariant subspaces of polynomially compact operators. , 1966 .
[12] O. Bueno. Mathematical Change and Inconsistency , 2002 .
[13] A. Fraenkel. Untersuchungen über die Grundlagen der Mengenlehre , 1925 .
[14] Otávio Bueno,et al. Empiricism, scientific change and mathematical change , 2000 .
[15] Georg Cantor. Über unendliche, lineare Punktmannigfaltigkeiten , 1984 .
[16] Akihiro Kanamori,et al. The Mathematical Development of Set Theory from Cantor to Cohen , 1996, Bulletin of Symbolic Logic.
[17] John L. Bell,et al. A course in mathematical logic , 1977 .
[18] Abraham Robinson,et al. Solution of an invariant subspace problem of K , 1966 .
[19] E. Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .
[20] Jody Azzouni,et al. Metaphysical Myths, Mathematical Practice: Acknowledgments , 1994 .
[21] Akihiro Kanamori,et al. The Mathematical Import of Zermelo's Well-Ordering Theorem , 1997, Bulletin of Symbolic Logic.
[22] Paul R. Halmos,et al. I Want to be a Mathematician , 1985 .
[23] G. Cantor. Ueber unendliche, lineare Punktmannichfaltigkeiten , 1883 .
[24] Paul R. Halmos,et al. I Want to Be A Mathematician: An Automathography , 1986 .
[25] Michael D. Resnik,et al. Mathematics as a science of patterns , 1997 .
[26] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .
[27] Gregory H. Moore. Zermelo’s Axiom of Choice , 1982 .
[28] E. Zermelo. Neuer Beweis für die Möglichkeit einer Wohlordnung , 1907 .
[29] A. Robinson. Non-standard analysis , 1966 .
[30] H. Jerome Keisler,et al. On the strength of nonstandard analysis , 1986, Journal of Symbolic Logic.
[31] Shaughan Lavine,et al. Understanding the Infinite , 1998 .
[32] Jody Azzouni. Thick epistemic access: Distinguishing the mathematical from the empirical , 1997 .
[33] I. Lakatos,et al. Proofs and Refutations: Frontmatter , 1976 .
[34] S. Shapiro. Foundations without Foundationalism: A Case for Second-Order Logic , 1994 .
[35] J. Meheus. Inconsistency in science , 2002 .
[36] Joseph W. Dauben,et al. Abraham Robinson: The Creation of Nonstandard Analysis, A Personal and Mathematical Odyssey , 1995 .