Incommensurability In Mathematics

In this paper, as part of an argument for the of revolutions in mathematics, I argue that there in incommensurability in Mathematics. After Devising A Framework Sensitive To Meaning Change And To Changes In The Extension Of Mathematical Predicates, I Consider Two Case Studies That Illustrate Different Ways In Which Incommensurability Emerge In Mathematical Practice. The Most Detailed Case Involves Nonstandard Analysis, And The Existence Of Different Notions Of The Continuum. But I Also Examine How Incommensurability Found Its Way Into Set Theory. I Conclude By Examining Some Consequences That Incommensurability Has To Mathematical Practice.

[1]  Michael Hallett Cantorian set theory and limitation of size , 1984 .

[2]  M. Leng,et al.  Platonism and Anti-Platonism in Mathematics , 2001 .

[3]  Cantor Ueber unendliche, lineare Punktmannichfaltigkeiten. 5. Fortsetzung. , 1883 .

[4]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[5]  Imre Lakatos,et al.  Cauchy and the continuum , 1978 .

[6]  The Metaphysics of the Calculus , 1967 .

[7]  Bas C. van Fraassen,et al.  The Scientific Image , 1980 .

[8]  I. Lakatos,et al.  Mathematics, science and epistemology: What does a mathematical proof prove? , 1978 .

[9]  Gregory H. Moore Zermelo's Axiom of Choice: Its Origins, Development, and Influence , 1982 .

[10]  I. Lakatos PROOFS AND REFUTATIONS (I)*† , 1963, The British Journal for the Philosophy of Science.

[11]  Paul R. Halmos,et al.  Invariant subspaces of polynomially compact operators. , 1966 .

[12]  O. Bueno Mathematical Change and Inconsistency , 2002 .

[13]  A. Fraenkel Untersuchungen über die Grundlagen der Mengenlehre , 1925 .

[14]  Otávio Bueno,et al.  Empiricism, scientific change and mathematical change , 2000 .

[15]  Georg Cantor Über unendliche, lineare Punktmannigfaltigkeiten , 1984 .

[16]  Akihiro Kanamori,et al.  The Mathematical Development of Set Theory from Cantor to Cohen , 1996, Bulletin of Symbolic Logic.

[17]  John L. Bell,et al.  A course in mathematical logic , 1977 .

[18]  Abraham Robinson,et al.  Solution of an invariant subspace problem of K , 1966 .

[19]  E. Zermelo Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .

[20]  Jody Azzouni,et al.  Metaphysical Myths, Mathematical Practice: Acknowledgments , 1994 .

[21]  Akihiro Kanamori,et al.  The Mathematical Import of Zermelo's Well-Ordering Theorem , 1997, Bulletin of Symbolic Logic.

[22]  Paul R. Halmos,et al.  I Want to be a Mathematician , 1985 .

[23]  G. Cantor Ueber unendliche, lineare Punktmannichfaltigkeiten , 1883 .

[24]  Paul R. Halmos,et al.  I Want to Be A Mathematician: An Automathography , 1986 .

[25]  Michael D. Resnik,et al.  Mathematics as a science of patterns , 1997 .

[26]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[27]  Gregory H. Moore Zermelo’s Axiom of Choice , 1982 .

[28]  E. Zermelo Neuer Beweis für die Möglichkeit einer Wohlordnung , 1907 .

[29]  A. Robinson Non-standard analysis , 1966 .

[30]  H. Jerome Keisler,et al.  On the strength of nonstandard analysis , 1986, Journal of Symbolic Logic.

[31]  Shaughan Lavine,et al.  Understanding the Infinite , 1998 .

[32]  Jody Azzouni Thick epistemic access: Distinguishing the mathematical from the empirical , 1997 .

[33]  I. Lakatos,et al.  Proofs and Refutations: Frontmatter , 1976 .

[34]  S. Shapiro Foundations without Foundationalism: A Case for Second-Order Logic , 1994 .

[35]  J. Meheus Inconsistency in science , 2002 .

[36]  Joseph W. Dauben,et al.  Abraham Robinson: The Creation of Nonstandard Analysis, A Personal and Mathematical Odyssey , 1995 .