Estimating percentage points by simulation
暂无分享,去创建一个
[1] B. Silverman,et al. Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives , 1978 .
[2] Frank E. Harrell,et al. A new distribution-free quantile estimator , 1982 .
[3] John S. White. The Moments of Log-Weibull Order Statistics , 1969 .
[4] D. Zelterman. Order statistics of the generalized logistic distribution , 1988 .
[5] Luke Tierney,et al. A Space-Efficient Recursive Procedure for Estimating a Quantile of an Unknown Distribution , 1983 .
[6] Michael A. Stephens,et al. On the Accuracy of Simulated Percentage Points , 1983 .
[7] Shie-Shien Yang. A Smooth Nonparametric Estimator of a Quantile Function , 1985 .
[8] Peter A. Lachenbruch,et al. A generalized quantile estimator , 1982 .
[9] I. Weissman. Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .
[10] H. Nagaraja. Asymptotic linear prediction of extreme order statistics , 1984 .
[11] R. E. Schafer. On assessing the precision of simulations , 1974 .
[12] Jerome Sacks,et al. ASYMPTOTICALLY OPTIMUM KERNELS FOR DENSITY ESTIMATION AT A POINT , 1981 .
[13] Dennis D. Boos,et al. Using extreme value theory to estimate large percentiles , 1984 .
[14] D. Teichroew. Tables of Expected Values of Order Statistics and Products of Order Statistics for Samples of Size Twenty and Less from the Normal Distribution , 1956 .