A Markov random field image segmentation model for color textured images

Abstract We propose a Markov random field (MRF) image segmentation model, which aims at combining color and texture features. The theoretical framework relies on Bayesian estimation via combinatorial optimization (simulated annealing). The segmentation is obtained by classifying the pixels into different pixel classes. These classes are represented by multi-variate Gaussian distributions. Thus, the only hypothesis about the nature of the features is that an additive Gaussian noise model is suitable to describe the feature distribution belonging to a given class. Here, we use the perceptually uniform CIE-L * u * v * color values as color features and a set of Gabor filters as texture features. Gaussian parameters are either computed using a training data set or estimated from the input image. We also propose a parameter estimation method using the EM algorithm. Experimental results are provided to illustrate the performance of our method on both synthetic and natural color images.

[1]  Chaur-Chin Chen,et al.  Color images' segmentation using scale space filter and markov random field , 1992, Pattern Recognit..

[2]  Bernard Chalmond,et al.  An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..

[3]  Haim H. Permuter,et al.  A study of Gaussian mixture models of color and texture features for image classification and segmentation , 2006, Pattern Recognit..

[4]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[5]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[7]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Peter J. W. Rayner,et al.  Unsupervised image segmentation using Markov random field models , 1997, Pattern Recognit..

[9]  S. Sangwine,et al.  The Colour Image Processing Handbook , 1998, Springer US.

[10]  A. Yuille,et al.  Object perception as Bayesian inference. , 2004, Annual review of psychology.

[11]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[12]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[13]  Zoltan Kato,et al.  A Markov Random Field Image Segmentation Model Using Combined Color and Texture Features , 2001, CAIP.

[14]  Zoltan Kato,et al.  Unsupervised segmentation of color textured images using a multilayer MRF model , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[15]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[16]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[17]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[18]  Nicolas Vandenbroucke,et al.  Color image segmentation by supervised pixel classification in a color texture feature space. Application to soccer image segmentation , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[19]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[20]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Zoltan Kato,et al.  Reversible Jump Markov Chain Monte Carlo for Unsupervised MRF Color Image Segmentation , 2004, BMVC.

[22]  B. Chalmond Modeling and inverse problems in image analysis , 2003 .

[23]  D. Mumford Pattern theory: a unifying perspective , 1996 .

[24]  Josiane Zerubia,et al.  Bayesian image classification using Markov random fields , 1996, Image Vis. Comput..

[25]  Josiane Zerubia,et al.  Unsupervised adaptive image segmentation , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[26]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[27]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Yee-Hong Yang,et al.  Multiresolution Color Image Segmentation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Wojciech Pieczynski,et al.  SEM algorithm and unsupervised statistical segmentation of satellite images , 1993, IEEE Trans. Geosci. Remote. Sens..

[30]  Josiane Zerubia,et al.  Unsupervised parallel image classification using Markovian models , 1999, Pattern Recognit..

[31]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[32]  Paul F. Whelan,et al.  Integration of feature distributions for colour texture segmentation , 2004, ICPR 2004.

[33]  Majid Mirmehdi,et al.  Segmentation of Color Textures , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Mark A. Clements,et al.  Digital Signal Processing and Statistical Classification , 2002 .

[35]  W. Richards,et al.  Perception as Bayesian Inference , 2008 .

[36]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[37]  D. Mumford The Bayesian Rationale for Energy Functionals 1 , 1994 .

[38]  Gerhard Winkler,et al.  Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction , 2002 .

[39]  Peter J. W. Rayner,et al.  Unsupervised image segmentation using Markov random field models , 2000, Pattern Recognit..