Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point

The classical problem of the direct construction of integrals for a Hamiltonian system in the neighbourhood of an elliptic equilibrium point is revisited in the light of the rigorous Nekhoroshev's like theory. It is shown how the results about stability over exponentially large times can be recovered in a simple and effective way, at least in the non-resonant case, and in fact even more conveniently than with the usual indirect method involving normalizing canonical transformations. An application is also made to the problem of the freezing of the harmonic actions in classical models On etudie la construction d'integrales premieres d'un systeme hamiltonien au voisinage d'un point fixe elliptique par une methode de type Nekhoroshev. On montre comment les resultats de stabilite sur des temps exponentiellement longs peuvent etre retrouves simplement dans les cas non resonnants, et en fait plus aisement que par la methode habituelle des transformations canoniques. On donne une application a l'invariance de l'action harmonique dans des modeles classiques

[1]  Giovanni Gallavotti,et al.  Stability of motions near resonances in quasi-integrable Hamiltonian systems , 1986 .

[2]  G. Contopoulos Resonance Cases and Small Divisors in a Third Integral of Motion. I , 1963 .

[3]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[4]  F. G. Gustavson,et al.  Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point , 1966 .

[5]  Edmund Taylor Whittaker VII.—On the Adelphic Integral of the Differential Equations of Dynamics , 1918 .

[6]  L. Galgani,et al.  Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem , 1989 .

[7]  L. Galgani,et al.  Formal integrals for an autonomous Hamiltonian system near an equilibrium point , 1978 .

[8]  L. Galgani,et al.  Rigorous estimates for the series expansions of Hamiltonian perturbation theory , 1985 .

[9]  Helmut Rüssmann,et al.  On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus , 1975 .

[10]  G. Benettin,et al.  A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems , 1985 .

[11]  T. Cherry On Integrals developable about a Singular Point of a Hamiltonian System of Differential Equations , 1924, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Edmund Taylor Whittaker,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: INDEX OF TERMS EMPLOYED , 1988 .

[13]  C. L. Siegel On the Integrals of Canonical Systems , 1941 .