A molecular recombination map of Antirrhinum majus

BackgroundGenetic recombination maps provide important frameworks for comparative genomics, identifying gene functions, assembling genome sequences and for breeding. The molecular recombination map currently available for the model eudicot Antirrhinum majus is the result of a cross with Antirrhinum molle, limiting its usefulness within A. majus.ResultsWe created a molecular linkage map of A. majus based on segregation of markers in the F2 population of two inbred lab strains of A. majus. The resulting map consisted of over 300 markers in eight linkage groups, which could be aligned with a classical recombination map and the A. majus karyotype. The distribution of recombination frequencies and distorted transmission of parental alleles differed from those of a previous inter-species hybrid. The differences varied in magnitude and direction between chromosomes, suggesting that they had multiple causes. The map, which covered an estimated of 95% of the genome with an average interval of 2 cM, was used to analyze the distribution of a newly discovered family of MITE transposons and tested for its utility in positioning seven mutations that affect aspects of plant size.ConclusionsThe current map has an estimated interval of 1.28 Mb between markers. It shows a lower level of transmission ratio distortion and a longer length than the previous inter-species map, making it potentially more useful. The molecular recombination map further indicates that the IDLE MITE transposons are distributed throughout the genome and are relatively stable. The map proved effective in mapping classical morphological mutations of A. majus.

[1]  H. Sommer,et al.  The 17‐kb Tam1 element of Antirrhinum majus induces a 3‐bp duplication upon integration into the chalcone synthase gene , 1984, The EMBO journal.

[2]  J. Willis,et al.  Transmission Ratio Distortion in Intraspecific Hybrids of Mimulus guttatus , 2005, Genetics.

[3]  H. Saedler,et al.  A linkage map of an F2 hybrid population of Antirrhinum majus and A. molle. , 2003, Genetics.

[4]  A. Hudson,et al.  The PHANTASTICA Gene Encodes a MYB Transcription Factor Involved in Growth and Dorsoventrality of Lateral Organs in Antirrhinum , 1998, Cell.

[5]  Marcos Egea-Cortines,et al.  Artificial decrease of leaf area affects inflorescence quality but not floral size in Antirrhinum majus , 2007 .

[6]  Cathie Martin,et al.  Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor , 1994, Nature.

[7]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[8]  Richard Kennaway,et al.  Evolution of Allometry in Antirrhinum[C][W] , 2009, The Plant Cell Online.

[9]  A. Chakravarti,et al.  A maximum likelihood method for estimating genome length using genetic linkage data. , 1991, Genetics.

[10]  E. Coen,et al.  Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. , 1990, Genes & development.

[11]  M. Egea-Cortines,et al.  FORMOSA controls cell division and expansion during floral development in Antirrhinummajus , 2009, Planta.

[12]  H. Sommer,et al.  Characterization of Antirrhinum Petal Development and Identification of Target Genes of the Class B MADS Box Gene DEFICIENSw⃞ , 2004, The Plant Cell Online.

[13]  M. Lenhard,et al.  The E3 Ubiquitin Ligase BIG BROTHER Controls Arabidopsis Organ Size in a Dosage-Dependent Manner , 2006, Current Biology.

[14]  S. Wessler,et al.  Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Marcos Egea-Cortines,et al.  The mutants compacta ähnlich, Nitida and Grandiflora define developmental compartments and a compensation mechanism in floral development in Antirrhinum majus , 2009, Journal of Plant Research.

[16]  P. Vargas,et al.  A geographical pattern of Antirrhinum (Scrophulariaceae) speciation since the Pliocene based on plastid and nuclear DNA polymorphisms , 2009 .

[17]  Sai Guna Ranjan Gurazada,et al.  Genome sequencing and analysis of the model grass Brachypodium distachyon , 2010, Nature.

[18]  Jens Timmer,et al.  Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. , 2007, Developmental cell.

[19]  H. Sommer,et al.  Structure of the chalcone synthase gene of Antirrhinum majus , 1986, Molecular and General Genetics MGG.

[20]  R. Carpenter,et al.  Resurgence of genetic instability in Antirrhinum majus , 1979 .

[21]  E. Albrecht,et al.  Comparative genetic linkage map of Solanum sect. Juglandifolia: evidence of chromosomal rearrangements and overall synteny with the tomatoes and related nightshades , 2009, Theoretical and Applied Genetics.

[22]  J. Willis,et al.  A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. , 2001, Genetics.

[23]  E. Coen,et al.  Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging , 1985, The EMBO journal.

[24]  J. A. Buso,et al.  BMC Plant Biology , 2003 .

[25]  B. Han,et al.  Molecular Cytogenetic Characterization of the Antirrhinum majus Genome Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under the accession nos. AY630561 (for BAC 5E10) and AY6305612 (for BAC 36D21). , 2005, Genetics.

[26]  M. Robles,et al.  University of Birmingham High throughput functional annotation and data mining with the Blast2GO suite , 2022 .

[27]  R. Michelmore,et al.  Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Zethof,et al.  A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity , 2007, Nature Genetics.

[29]  E. Coen,et al.  Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. , 1993, The EMBO journal.

[30]  D. D. Kosambi The estimation of map distances from recombination values. , 1943 .

[31]  I. Leitch,et al.  Nuclear DNA Amounts in Angiosperms and their Modern Uses—807 New Estimates , 2000 .

[32]  H. Kuckuck,et al.  Die Erbfaktoren beiAntirrhinum majus und ihre Bezeichnung , 1930, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.

[33]  Z. Schwarz‐Sommer,et al.  An everlasting pioneer: the story of Antirrhinum research , 2003, Nature Reviews Genetics.

[34]  Roeland E. Voorrips,et al.  Software for the calculation of genetic linkage maps , 2001 .

[35]  E. Coen,et al.  Origin of floral asymmetry in Antirrhinum , 1996, Nature.

[36]  E. Coen,et al.  Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum , 1993, Cell.