A molecular recombination map of Antirrhinum majus
暂无分享,去创建一个
Andrew Hudson | Marcos Egea-Cortines | Thomas Gübitz | Z. Schwarz‐Sommer | M. Egea-Cortines | J. Weiss | A. Hudson | Julia Weiss | Zsuzsanna Schwarz-Sommer | Perla Gómez-di-Marco | Luciana Delgado-Benarroch | Luciana Delgado-Benarroch | T. Gübitz | P. Gómez-di-Marco
[1] H. Sommer,et al. The 17‐kb Tam1 element of Antirrhinum majus induces a 3‐bp duplication upon integration into the chalcone synthase gene , 1984, The EMBO journal.
[2] J. Willis,et al. Transmission Ratio Distortion in Intraspecific Hybrids of Mimulus guttatus , 2005, Genetics.
[3] H. Saedler,et al. A linkage map of an F2 hybrid population of Antirrhinum majus and A. molle. , 2003, Genetics.
[4] A. Hudson,et al. The PHANTASTICA Gene Encodes a MYB Transcription Factor Involved in Growth and Dorsoventrality of Lateral Organs in Antirrhinum , 1998, Cell.
[5] Marcos Egea-Cortines,et al. Artificial decrease of leaf area affects inflorescence quality but not floral size in Antirrhinum majus , 2007 .
[6] Cathie Martin,et al. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor , 1994, Nature.
[7] Juan Miguel García-Gómez,et al. BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .
[8] Richard Kennaway,et al. Evolution of Allometry in Antirrhinum[C][W] , 2009, The Plant Cell Online.
[9] A. Chakravarti,et al. A maximum likelihood method for estimating genome length using genetic linkage data. , 1991, Genetics.
[10] E. Coen,et al. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. , 1990, Genes & development.
[11] M. Egea-Cortines,et al. FORMOSA controls cell division and expansion during floral development in Antirrhinummajus , 2009, Planta.
[12] H. Sommer,et al. Characterization of Antirrhinum Petal Development and Identification of Target Genes of the Class B MADS Box Gene DEFICIENSw⃞ , 2004, The Plant Cell Online.
[13] M. Lenhard,et al. The E3 Ubiquitin Ligase BIG BROTHER Controls Arabidopsis Organ Size in a Dosage-Dependent Manner , 2006, Current Biology.
[14] S. Wessler,et al. Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[15] Marcos Egea-Cortines,et al. The mutants compacta ähnlich, Nitida and Grandiflora define developmental compartments and a compensation mechanism in floral development in Antirrhinum majus , 2009, Journal of Plant Research.
[16] P. Vargas,et al. A geographical pattern of Antirrhinum (Scrophulariaceae) speciation since the Pliocene based on plastid and nuclear DNA polymorphisms , 2009 .
[17] Sai Guna Ranjan Gurazada,et al. Genome sequencing and analysis of the model grass Brachypodium distachyon , 2010, Nature.
[18] Jens Timmer,et al. Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. , 2007, Developmental cell.
[19] H. Sommer,et al. Structure of the chalcone synthase gene of Antirrhinum majus , 1986, Molecular and General Genetics MGG.
[20] R. Carpenter,et al. Resurgence of genetic instability in Antirrhinum majus , 1979 .
[21] E. Albrecht,et al. Comparative genetic linkage map of Solanum sect. Juglandifolia: evidence of chromosomal rearrangements and overall synteny with the tomatoes and related nightshades , 2009, Theoretical and Applied Genetics.
[22] J. Willis,et al. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. , 2001, Genetics.
[23] E. Coen,et al. Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging , 1985, The EMBO journal.
[24] J. A. Buso,et al. BMC Plant Biology , 2003 .
[25] B. Han,et al. Molecular Cytogenetic Characterization of the Antirrhinum majus Genome Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under the accession nos. AY630561 (for BAC 5E10) and AY6305612 (for BAC 36D21). , 2005, Genetics.
[26] M. Robles,et al. University of Birmingham High throughput functional annotation and data mining with the Blast2GO suite , 2022 .
[27] R. Michelmore,et al. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. , 1991, Proceedings of the National Academy of Sciences of the United States of America.
[28] J. Zethof,et al. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity , 2007, Nature Genetics.
[29] E. Coen,et al. Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. , 1993, The EMBO journal.
[30] D. D. Kosambi. The estimation of map distances from recombination values. , 1943 .
[31] I. Leitch,et al. Nuclear DNA Amounts in Angiosperms and their Modern Uses—807 New Estimates , 2000 .
[32] H. Kuckuck,et al. Die Erbfaktoren beiAntirrhinum majus und ihre Bezeichnung , 1930, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.
[33] Z. Schwarz‐Sommer,et al. An everlasting pioneer: the story of Antirrhinum research , 2003, Nature Reviews Genetics.
[34] Roeland E. Voorrips,et al. Software for the calculation of genetic linkage maps , 2001 .
[35] E. Coen,et al. Origin of floral asymmetry in Antirrhinum , 1996, Nature.
[36] E. Coen,et al. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum , 1993, Cell.