A quasi-continuous dual-end 885 nm diode-pumped three-mirror ring-cavity laser operating at 1319 nm

The 1319 nm lasers have important applications in the fields of optical fiber communication, laser medical treatment and laser color display. The Nd:YAG laser pumped by 808 nm laser diode is an efficient alternative to achieving 1319 nm laser output. In recent years, direct pump technology using 885 nm laser diodes has become more promising due to the dramatically reduced thermal effect and improved optical conversion efficiency. Quasi-continuous sodium beacon laser with microsecond pulse duration generated by the sum-frequency of 1319 nm and 1064 nm lasers can provide a gatable pulse format to eliminate the interference of atmospheric Rayleigh scattering and mitigate the spot elongation of sodium guide star to improve imaging accuracy. However, relaxation oscillation in the microsecond pulse could cause the damage to the nonlinear crystal and reduce the efficiency of sum-frequency generation. It is effective to suppress the relaxation by taking advantage of second harmonic generation, in which a nonlinear crystal is utilized to reduce the pulse peaks with higher intensity. In this paper, we demonstrate a high-power relaxation-oscillation-free quasi-continuous microsecond pulse 1319 nm laser by using the dual-end 885 nmdiode-pumped three-mirror ring-cavity. Intra-cavity etalon and customized mirror coating are employed to prevent the 1064 nm and 1338 nmline of Nd:YAG laser crystal from oscillating. A power tuning device, including a thin-film polarizer and a halfwave plate is implemented as the output mirror of ring cavity, which enables continuous adjustment of the out coupling ratio. The output power of the 1319 nm polarized laser is 22.5 W pumped by 150 W 885 nm laser diode. The repetition rate is 800 Hz and pulse width is 150 μs. The corresponding optical conversion efficiency is 15%. The beam quality factor M is measured to be M x = 1.35 and M y = 1.24. By precisely adjusting the temperature of etalon viz. adjusting refractive index as well as thickness of the etalon material, laser wavelength is tuned from 1318.888 nm to 1319.358 nm, corresponding to a tunable range of 470 pm and tuning accuracy of 0.7 pm. A 1319 nm frequency doubling crystal KTiOPO4 (5 mm × 5 mm × 15 mm, θ = 59.8◦ and φ = 0◦) is inserted into the cavity to suppress the relaxation oscillation. The pulse waveform quickly reaches a smooth * Project supported by the State Key Laboratory of Applied Optics, National Natural Science Foundation of China (Grant No. 61205101) and Shenzhen Science and Technology Project (Grant Nos. GJHZ20140417113430592, JCYJ20140417113130693, JCYJ20150925163313898). † Corresponding author. E-mail: xfzhang@buaa.edu.cn