Solving optimisation problems in metal forming using FEM: A metamodel based optimisation algorithm

During the last decades, Finite Element (FEM) simulations of metal forming processes have become important tools for designing feasible production processes. In more recent years, several authors recognised the potential of coupling FEM simulations to mathematical opti- misation algorithms to design optimal metal forming processes instead of only feasible ones. This report describes the selection, development and implementation of an optimisa- tion algorithm for solving optimisation problems for metal forming processes using time consuming FEM simulations. A Sequential Approximate Optimisation algorithm is pro- posed, which incorporates metamodelling techniques and sequential improvement strate- gies for enhancing the e±ciency of the algorithm. The algorithm has been implemented in MATLABr and can be used in combination with any Finite Element code for simulating metal forming processes. The good applicability of the proposed optimisation algorithm within the ¯eld of metal forming has been demonstrated by applying it to optimise the internal pressure and ax- ial feeding load paths for manufacturing a simple hydroformed product. Resulting was a constantly distributed wall thickness throughout the ¯nal product. Subsequently, the algorithm was compared to other optimisation algorithms for optimising metal forming by applying it to two more complicated forging examples. In both cases, the geometry of the preform was optimised. For one forging application, the algorithm managed to solve a folding defect. For the other application both the folding susceptibility and the energy consumption required for forging the part were reduced by 10% w.r.t. the forging process proposed by the forging company. The algorithm proposed in this report yielded better results than the optimisation algorithms it was compared to.

[1]  Thomas J. Santner,et al.  Sequential design of computer experiments for robust parameter design , 2002 .

[2]  R. Sundaram A First Course in Optimization Theory: Optimization in ℝ n , 1996 .

[3]  Mgd Marc Geers,et al.  An adaptive simulation approach designed for tube hydroforming processes , 2005 .

[4]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[5]  William D. Berry Understanding regression assumptions , 1993 .

[6]  W. H. Sillekens,et al.  Hydroforming Processes for Tubular Parts. Optimisation by Means of Adaptive and Iterative FEM Simulation , 2001 .

[7]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[8]  Ken J. Craig,et al.  Automotive crashworthiness design using response surface‐based variable screening and optimization , 2005 .

[9]  P. Villon,et al.  Moving least squares response surface approximation: Formulation and metal forming applications , 2005 .

[10]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[11]  Calyampudi Radhakrishna Rao,et al.  Handbook of Statistics, Vol. 6: Sampling. , 1990 .

[12]  Timothy W. Simpson,et al.  Analysis of support vector regression for approximation of complex engineering analyses , 2003, DAC 2003.

[13]  Jerome Sacks,et al.  Designs for Computer Experiments , 1989 .

[14]  M. A. Karkoub,et al.  Modelling Deformation of Hydroformed Circular Plates Using Neural Networks , 2002 .

[15]  Kyung K. Choi,et al.  Die shape design optimization of sheet metal stamping process using meshfree method , 2001 .

[16]  Luísa Costa Sousa,et al.  Optimisation of shape and process parameters in metal forging using genetic algorithms , 2004 .

[17]  W. Sosnowski,et al.  Sensitivity based optimization of sheet metal forming tools , 2002 .

[18]  Y. Liu,et al.  FE simulation for concurrent design and manufacture of automotive sheet-metal parts , 2004 .

[19]  Karl Kuzman,et al.  An industrial example of FE supported development of a new product , 2004 .

[20]  Ren-Jye Yang,et al.  Approximation methods in multidisciplinary analysis and optimization: a panel discussion , 2004 .

[21]  J. Huetink,et al.  Solving optimisation problems in metal forming using Finite Element simulation and metamodelling techniques , 2005 .

[22]  Michael J. Wheeler Mechanical Design Synthesis NEW PROCESSES FOR INNOVATIVE PRODUCT DEVELOPMENT , 2002 .

[23]  Olaf Schenk,et al.  Optimal design of metal forming die surfaces with evolution strategies , 2004 .

[24]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[25]  Luigi Carrino,et al.  A posteriori optimisation of the forming pressure in superplastic forming processes by the finite element method , 2003 .

[26]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[27]  William J. Welch,et al.  Computer experiments and global optimization , 1997 .

[28]  T. Simpson,et al.  Computationally Inexpensive Metamodel Assessment Strategies , 2002 .

[29]  Catarina F. Castro,et al.  Optimization of metal forming processes , 2004 .

[30]  Suwat Jirathearanat,et al.  Optimization of Loading Paths for Tube Hydroforming , 2004 .

[31]  Jack P. C. Kleijnen,et al.  Kriging interpolation in simulation: a survey , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[32]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[33]  A. Potiron,et al.  SHAPE OPTIMISATION OF AUTOMOTIVE SECURITY-PARTS REGARDING THE INFLUENCE OF RESIDUAL STRESSES AND MATERIAL DAMAGE ECCOMAS 2004 , 2004 .

[34]  Wei Chen,et al.  Sequential Optimization and Reliability Assessment Method for Metal Forming Processes , 2004 .

[35]  Petros Koumoutsakos,et al.  Accelerating evolutionary algorithms with Gaussian process fitness function models , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[36]  Nicholas Zabaras,et al.  An updated Lagrangian finite element sensitivity analysis of large deformations using quadrilateral elements , 2001 .

[37]  K. Kuzman,et al.  Optimization of sheet metal forming processes by the use of numerical simulations , 2002 .

[38]  Nielen Stander,et al.  An Optimization Procedure For Springback Compensation Using LS-OPT , 2002 .

[39]  D. Faina,et al.  Understanding Design of Experiments , 1998, IEEE Electrical Insulation Magazine.

[40]  Ramana V. Grandhi,et al.  3‐D Preform Shape Optimization In Metal Forming , 2004 .

[41]  Jack P. C. Kleijnen,et al.  A methodology for fitting and validating metamodels in simulation , 2000, Eur. J. Oper. Res..

[42]  Yong H. Kim,et al.  Optimal design of superplastic forming processes , 2001 .

[43]  Karl Brian Nielsen,et al.  Least-Square Formulation of the Object Function, applied on Hydro Mechanical Tube Forming , 2001 .

[44]  Koetsu Yamazaki,et al.  Maximization of the crushing energy absorption of cylindrical shells , 2000 .

[45]  J. Huetink,et al.  Metamodelling techniques for the optimisation of metal forming processes , 2005 .

[46]  Semra Tunali,et al.  Dealing with the least squares regression assumptions in simulation metamodeling , 2000 .

[47]  K. Debray,et al.  Optimum Design Of Addendum Surfaces In Sheet Metal Forming Process , 2004 .

[48]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[49]  Tapabrata Ray,et al.  Optimal process design of sheet metal forming for minimum springback via an integrated neural network evolutionary algorithm , 2004 .

[50]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[51]  Timothy W. Simpson,et al.  Sampling Strategies for Computer Experiments: Design and Analysis , 2001 .

[52]  Koetsu Yamazaki,et al.  Optimization of the crushing characteristics of triangulated aluminum beverage cans , 2004 .

[53]  A. Lejeune,et al.  CONTROL OF DAMAGE IN FLANGES HYDROFORMING , 2004 .

[54]  Zou Lin,et al.  Optimization of die profile for improving die life in the hot extrusion process , 2003 .

[55]  Ba Nghiep Nguyen,et al.  A Numerical Process Control Method for Circular-Tube Hydroforming Prediction , 2004 .

[56]  Soo-Ik Oh,et al.  Design sensitivity analysis and optimization of the hydroforming process , 2001 .

[57]  Jack P. C. Kleijnen,et al.  Application-driven sequential designs for simulation experiments: Kriging metamodelling , 2004, J. Oper. Res. Soc..

[58]  Hakim Naceur,et al.  Response Surface Methodology for the Design of Sheet Metal Forming Parameters to Control Springback Effects using the Inverse Approach , 2004 .

[59]  Kyung K. Choi,et al.  A new response surface methodology for reliability-based design optimization , 2004 .

[60]  Jian Cao,et al.  Analysis of an axisymmetric deep-drawn part forming using reduced forming steps , 2001 .

[61]  D. A. Linkens,et al.  Roll load prediction—data collection, analysis and neural network modelling , 2004 .

[62]  Dirk Büche,et al.  Multi-objective Evolutionary Optimization of Gas Turbine Components , 2004 .

[63]  Xiaoxiang Shi,et al.  A new approach of die shape optimization for sheet metal forming processes , 2004 .

[64]  Michael S. Eldred,et al.  OVERVIEW OF MODERN DESIGN OF EXPERIMENTS METHODS FOR COMPUTATIONAL SIMULATIONS , 2003 .

[65]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[66]  Reiner Kopp,et al.  Some current development trends in metal-forming technology , 1996 .

[67]  Jean-Louis Batoz,et al.  Optimization Of The Blankholder Force With Application To The Numisheet’02 Deep Drawing Benchmark Test B1 , 2004 .

[68]  B. J. Mac Donald,et al.  Determination of the optimal load path for tube hydroforming processes using a fuzzy load control algorithm and finite element analysis , 2004 .

[69]  Jean-Loup Chenot,et al.  Adjoint state method for shape sensitivity analysis in non‐steady forming applications , 2003 .

[70]  Fabrizio Micari,et al.  An integrated approach to the design of tube hydroforming processes: artificial intelligence, numerical analysis and experimental investigation , 2004 .

[71]  C. Labergere,et al.  New strategies for optimal control of command laws for tube hydroforming processes , 2004 .

[72]  Tomas Jansson,et al.  Optimization of sheet metal forming processes , 2005 .

[73]  Søren Nymand Lophaven,et al.  Aspects of the Matlab toolbox DACE , 2002 .

[74]  Jean-Louis Batoz,et al.  OPTIMIZATION AND CONTROL OF THE BLANKHOLDER FORCE IN SHEET METAL STAMPING WITH APPLICATION TO DEEP DRAWING OF A CYLINDRICAL CUP , 2004 .

[75]  S. M Byon,et al.  FEM-based process optimal design in steady-state metal forming considering strain-hardening , 2001 .

[76]  Tomas Jansson,et al.  Using surrogate models and response surfaces in structural optimization – with application to crashworthiness design and sheet metal forming , 2003 .

[77]  Eiji Nakamachi,et al.  Development of optimum process design system for sheet fabrication using response surface method , 2003 .

[78]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Author Index , 2000 .

[79]  K. Wiśniewski,et al.  On the computation of design derivatives for Huber–Mises plasticity with non‐linear hardening , 2003 .

[80]  T. T. Do,et al.  Sensitivity Analysis and Optimization Algorithms for 3D Forging Process Design , 2004 .

[81]  Jean-Pascal Kleinermann,et al.  Optimisation methods for initial/tool shape optimisation in metal forming processes , 2005 .

[82]  Kuang-Jau Fann,et al.  Optimization of loading conditions for tube hydroforming , 2003 .

[83]  Taylan Altan,et al.  Optimization of blank dimensions to reduce springback in the flexforming process , 2004 .

[84]  T. Simpson,et al.  A Study on the Use of Kriging Models to Approximate Deterministic Computer Models , 2003, DAC 2003.

[85]  Jean-Philippe Ponthot,et al.  Parameter identification and shape/process optimization in metal forming simulation , 2003 .

[86]  Taylan Altan,et al.  Process optimization in stamping—a case study for flanging a clutch hub from steel plate , 2004 .

[87]  Timothy W. Simpson,et al.  On the Use of Statistics in Design and the Implications for Deterministic Computer Experiments , 1997 .

[88]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[89]  Taylan Altan,et al.  Adaptive FEM simulation for prediction of variable blank holder force in conical cup drawing , 2004 .

[90]  M.H.A. Bonte Optimisation: An Introduction , 2004 .

[91]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[92]  Virginia Torczon,et al.  Using approximations to accelerate engineering design optimization , 1998 .

[93]  Luigi Carrino,et al.  On the optimisation of superplastic forming processes by the finite-element method , 2003 .

[94]  Ramana V. Grandhi,et al.  Optimum Design of Forging Process Parameters and Preform Shape under Uncertainties , 2004 .

[95]  Michał Kleiber,et al.  Parameter sensitivity of elastoplastic response , 1995 .

[96]  Naeem Zafar,et al.  Optimization of a Tube Hydroforming Process , 2004 .

[97]  Ramana V. Grandhi,et al.  Studies on optimization of metal forming processes using sensitivity analysis methods , 2004 .

[98]  Shapour Azarm,et al.  Bayesian meta‐modelling of engineering design simulations: a sequential approach with adaptation to irregularities in the response behaviour , 2005 .

[99]  Chris M. Varcol,et al.  METAMODEL-ASSISTED EVOLUTION STRATEGIES APPLIED IN ELECTROMAGNETIC COMPATIBILITY DESIGN , 2005 .

[100]  Timothy W. Simpson,et al.  On the Use of Kriging Models to Approximate Deterministic Computer Models , 2004, DAC 2004.

[101]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[102]  Taylan Altan,et al.  Optimization of mechanical crimping to assemble tubular components , 2004 .

[103]  Tomas Jansson,et al.  Using the response surface methodology and the D-optimality criterion in crashworthiness related problems , 2002 .

[104]  X Duan,et al.  Shape optimisation using FEA software: a V-shaped anvil as an example , 2002 .

[105]  Hakim Naceur,et al.  Optimization of drawbead restraining forces and drawbead design in sheet metal forming process , 2001 .

[106]  William D. Berry,et al.  Multiple regression in practice , 1985 .

[107]  H. J. Arnold Introduction to the Practice of Statistics , 1990 .

[108]  M. Sasena,et al.  Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization , 2002 .

[109]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[110]  Matteo Strano,et al.  Adaptive Selection of Loads During FEM Simulation of Sheet Forming Processes , 2004 .

[111]  Taylan Altan,et al.  The use of FEA and design of experiments to establish design guidelines for simple hydroformed parts , 2000 .

[112]  Tomas Jansson,et al.  Optimization of Draw-In for an Automotive Sheet Metal Part An evaluation using surrogate models and response surfaces , 2005 .