Noncoherent SIMO pre-log via resolution of singularities
暂无分享,去创建一个
Erwin Riegler | Helmut Bölcskei | Bernd Sturmfels | Giuseppe Durisi | Veniamin I. Morgenshtern | Shaowei Lin | B. Sturmfels | G. Durisi | H. Bölcskei | Erwin Riegler | V. Morgenshtern | Shaowei Lin
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[3] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[4] Amos Lapidoth,et al. Capacity bounds via duality with applications to multiple-antenna systems on flat-fading channels , 2003, IEEE Trans. Inf. Theory.
[5] Klaus Fritzsche,et al. From holomorphic functions to complex manifolds , 2002 .
[6] Thomas M. Cover,et al. Elements of information theory (2. ed.) , 2006 .
[7] Harold R. Parks,et al. A Primer of Real Analytic Functions , 1992 .
[8] W. Rudin. Real and complex analysis, 3rd ed. , 1987 .
[9] Sumio Watanabe,et al. Algebraic Geometry and Statistical Learning Theory: Contents , 2009 .
[10] R. Cooke. Real and Complex Analysis , 2011 .
[11] 渡邊 澄夫. Algebraic geometry and statistical learning theory , 2009 .
[12] Helmut Bölcskei,et al. The SIMO pre-log can be larger than the SISO pre-log , 2009, 2010 IEEE International Symposium on Information Theory.
[13] Yingbin Liang,et al. Capacity of noncoherent time-selective Rayleigh-fading channels , 2004, IEEE Transactions on Information Theory.
[14] Michael Atiyah,et al. Resolution of Singularities and Division of Distributions , 1970 .
[15] H. Hironaka. Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .