Bipolar Membrane Electrodialysis

The bipolar membrane (BPM) is a composite membrane composed of three parts: a cation exchange layer, an anion exchange layer, and an interface layer. BMP electrodialysis is an energy-efficient means for converting salts to their acids and bases. In the process, water molecules are transferred from the external solution into the membrane and generate a water dissociation (splitting) reaction. Water transfer and water dissociation are the fundamental phenomena in BMP technology and are discussed here. Water splitting enhances the efficiency of the process and is accelerated by incorporating catalytic components into the interface. The thickness of the interface layer and the potential gradient, current efficiency, energy consumption, and rectification effect are also discussed. The BMP technology is applied in the fields of pollution control, resource recovery and chemical processing. Practicing examples are introduced in HF/HNO 3 recovery from the stainless pickling process and NaOH/H 2 SO 4 recovery from the rayon manufacturing process.

[1]  Aiguang Lin,et al.  Application of electrodialysis to the production of Vitamin C , 2000 .

[2]  Salvador Mafé,et al.  Ion selectivity and water dissociation in polymer bipolar membranes studied by membrane potential and current–voltage measurements , 2000 .

[3]  Akihiko Tanioka,et al.  Effect of interface structure and amino groups on water splitting and rectification effects in bipolar membranes , 1997 .

[4]  Krishnamurthy N. Mani,et al.  Aquatech membrane technology for recovery of acid/base values for salt streams , 1988 .

[5]  G. Pourcelly,et al.  Co-ion leakage through bipolar membranes Influence on I-V responses and water-splitting efficiency , 1994 .

[6]  B. Bauer,et al.  BETTER BIPOLAR MEMBRANES , 1993 .

[7]  A. Mauro,et al.  Space Charge Regions in Fixed Charge Membranes and the Associated Property of Capacitance. , 1962, Biophysical journal.

[8]  Yang Weihua,et al.  Effect of cell configurations on the performance of citric acid production by a bipolar membrane electrodialysis , 2002 .

[9]  Claude Gavach,et al.  Analysis of factors limiting the use of bipolar membranes: a simplified model to determine trends , 1996 .

[10]  R. Simons The steady and non-steady state properties of bipolar membranes. , 1972, Biochimica et biophysica acta.

[11]  Matthias Wessling,et al.  Bipolar membrane preparation , 2000 .

[12]  G. Pourcelly,et al.  Steady-state ion transport through homopolar ion-exchange membranes: an analytical solution of the Nernst–Planck equations for a 1:1 electrolyte under the electroneutrality assumption , 1999 .

[13]  Yoshinobu Tanaka Water dissociation reaction generated in an ion exchange membrane , 2010 .

[14]  Matthias Wessling,et al.  Behaviour of bipolar membranes at high current density , 1998 .

[15]  K. N. Mani Electrodialysis water splitting technology , 1991 .

[16]  R. Simons,et al.  Preparation of a high performance bipolar membrane , 1993 .

[17]  Yang Weihua,et al.  Citric acid production by electrodialysis with bipolar membranes , 2002 .

[18]  E. Staude,et al.  Ion transfer across electrodialysis membranes in the overlimiting current range: chronopotentiometric studies , 1992 .

[19]  M. Eigen,et al.  Methods for investigation of ionic reactions in aqueous solutions with half-times as short as 10–9 sec. Application to neutralization and hydrolysis reactions , 1954 .

[20]  Matthias Wessling,et al.  Concentration polarization with monopolar ion exchange membranes: current-voltage curves and water dissociation , 1999 .

[21]  R. Simons,et al.  Water splitting in ion exchange membranes , 1985 .

[22]  O. Kedem,et al.  Low-polarisation electrodialysis membranes , 1998 .

[23]  T. Sata,et al.  Effect of Hydrophobicity of Ion Exchange Groups of Anion Exchange Membranes on Permselectivity between Two Anions , 1995 .

[24]  Yoshinobu Tanaka,et al.  Water dissociation in ion-exchange membrane electrodialysis , 2002 .

[25]  G. Eigenberger,et al.  Elektromembranverfahren. Teil 2: Anwendungsbeispiele , 1995 .

[26]  Xu Tongwen,et al.  Electrodialysis processes with bipolar membranes (EDBM) in environmental protection—a review , 2002 .

[27]  Harm Schmoldt,et al.  Handbook on Bipolar Membrane Technology , 2002 .

[28]  Kang-Jen Liu,et al.  Application of bipolar membrane technology: A novel process for control of sulfur dioxide from flue gases , 1978 .

[29]  Rectification by a Double Membrane , 1965 .

[30]  K. D. Kulbe,et al.  Recovery of organic acids with high molecular weight using a combined electrodialytic process , 2000 .

[31]  E. Staude,et al.  Ion transfer across electrodialysis membranes in the overlimiting current range: stationary voltage current characteristics and current noise power spectra under different conditions of free convection , 1992 .

[32]  F. E. Karasz,et al.  The sodium salts of sulphonated poly(aryl-ether-ether-ketone) (PEEK): Preparation and characterization , 1987 .

[33]  Claude Gavach,et al.  Production of sulphuric acid and caustic soda from sodium sulphate by electromembrane processes. Comparison between electro-electrodialysis and electrodialysis on bipolar membrane , 1993 .

[34]  Salvador Mafé,et al.  Electric field-assisted proton transfer and water dissociation at the junction of a fixed-charge bipolar membrane , 1998 .

[35]  T. Sata Properties of composite membranes formed from ion-exchange membranes and conducting polymers. 4. Change in membrane resistance during electrodialysis in the presence of surface-active agents , 1993 .

[36]  M. Junginger,et al.  Application of new sulfonated ionomer membranes in the separation of pentene and pentane by facilitated transport , 1997 .

[37]  H. Coster,et al.  AC impedance of the bipolar membrane at low and high frequencies , 1995 .

[38]  H. Strathmann,et al.  Limiting current density and water dissociation in bipolar membranes , 1997 .

[39]  G. Pourcelly,et al.  Chronopotentiometric response of an ion-exchange membrane in the underlimiting current-range. Transport phenomena within the diffusion layers , 1997 .

[40]  Tai‐Shung Chung,et al.  The ageing phenomenon of polyethersulphone hollow fibre membranes for gas separation and their characteristics , 1999 .

[41]  Y. Mizutani Structure of ion exchange membranes , 1990 .

[42]  Lin Aiguang Application of bipolar membrane electrodialysis in production of silicic acid , 2001 .

[43]  K. Schügerl,et al.  Comparison of the Production of Lactic Acid by Three Different Lactobacilli and its Recovery by Extraction and Electrodialysis , 1995 .

[44]  Matthias Wessling,et al.  Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes , 1999 .

[45]  Vincent J. Frilette,et al.  Preparation and Characterization of Bipolar Ion Exchange Membranes , 1956 .

[46]  S. Nakao,et al.  The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes , 1997 .

[47]  Seung-Hyeon Moon,et al.  Lactic acid recovery using two-stage electrodialysis and its modelling , 1998 .

[48]  Claude Gavach,et al.  Development of electrodialysis with bipolar membrane for the treatment of concentrated nitrate effluents , 1996 .

[49]  G. Pourcelly,et al.  Chronopotentiometric response of a cation exchange membrane in contact with chromium(III) solutions , 1996 .

[50]  Yoshinobu Tanaka,et al.  Ion Exchange Membranes: Fundamentals and Applications , 2015 .

[51]  Matthias Wessling,et al.  Optimisation strategies for the preparation of bipolar membranes with reduced salt ion leakage in acid–base electrodialysis , 2001 .

[52]  G. Khanarian,et al.  Water dissociation in bipolar membranes: Experiments and theory , 1978, The Journal of Membrane Biology.

[53]  R. Simons,et al.  A mechanism for water flow in bipolar membranes , 1993 .

[54]  R. Simons,et al.  A novel method for preparing bipolar membranes , 1986 .

[55]  G. Simon,et al.  Chapter 1.3 Experimental methods for the determination of non-transport properties of membranes , 1986 .

[56]  T. V. D. Boomgaard,et al.  Current-voltage curve of a bipolar membrane at high current density , 1996 .

[57]  H. Strathmann,et al.  Current–voltage behaviour of bipolar membranes in concentrated salt solutions investigated with chronopotentiometry , 2002 .

[58]  Salvador Mafé,et al.  A SIMPLE MODEL FOR AC IMPEDANCE SPECTRA IN BIPOLAR MEMBRANES , 1996 .

[59]  V. I. Zabolotskii,et al.  Electrolytic dissociation of water molecules in systems comprising solutions and MA-40 anion-exchange membranes modified with transition metal ions , 1992 .

[60]  Derek Pletcher,et al.  A first course in ion permeable membranes , 1997 .

[61]  R. Audinos,et al.  Characterization of electrodialysis membranes by chronopotentiometry , 1988 .

[62]  T. Sata Studies on ion exchange membranes with permselectivity for specific ions in electrodialysis , 1994 .

[63]  Matthias Wessling,et al.  Chronopotentiometry for the advanced current–voltage characterisation of bipolar membranes , 2001 .

[64]  J. Kitchener,et al.  Polarization Phenomena in Commercial Ion‐Exchange Membranes , 1966 .

[65]  Kang-Jen Liu,et al.  Use of bipolar membranes for generation of acid and base — an engineering and economic analysis , 1977 .

[66]  V. Lobo Electrolyte solutions : literature data on thermodynamic and transport properties , 1981 .

[67]  T. Sata,et al.  Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature , 1996 .

[68]  V. I. Zabolotskii,et al.  Investigation of the catalytic activity of secondary and tertiary amino groups in the dissociation of water on a bipolar mb-2 membrane , 1986 .

[69]  E. Staude,et al.  Reverse electrodialysis (RED) with bipolar membranes, an energy storage system , 2010 .

[70]  Ramŕez,et al.  Model for ion transport in bipolar membranes. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[71]  V. Cauwenberg,et al.  Application of electrodialysis within fine chemistry , 2001 .

[72]  H. Grib,et al.  Extraction of amphoteric amino acids by an electromembrane process. pH and electrical state control by electrodialysis with bipolar membranes , 1998 .

[73]  F. Effenberger,et al.  Anion-exchange membranes with improved alkaline stability , 1990 .

[74]  N. Gnusin,et al.  Catalysis of water dissociation by the phosphoric-acid groups of an MB-3 bipolar membrane , 1986 .

[75]  Ricardo Alvarez,et al.  Salicylic acid production by electrodialysis with bipolar membranes , 1997 .

[76]  O. Kedem,et al.  Role of the membrane surface in concentration polarization at ion-exchange membrane , 1988 .

[77]  G. Eigenberger,et al.  Development and characterization of ion-exchange polymer blend membranes , 1998 .

[78]  V. K. Indusekhar,et al.  Studies on bipolar membranes. Part II — Conversion of sodium acetate to acetic acid and sodium hydroxide , 1997 .

[79]  P. Ramirez,et al.  Electrochemical characterization of polymer ion-exchange bipolar membranes , 1997 .

[80]  K. Kondo,et al.  Novel anion exchange membranes having fluorocarbon backbone: preparation and stability , 1986 .

[81]  Akihiko Tanioka,et al.  Effect of polymer materials on membrane potential, rectification and water splitting in bipolar membranes , 1996 .

[82]  R. Porter,et al.  Kinetics of PEEK sulfonation in concentrated sulfuric acid , 1992 .

[83]  S. Koter,et al.  Electromembrane Processes in Environment Protection , 2000 .

[84]  J. Sandeaux,et al.  WATER DEMINERALIZATION BY ELECTRODEIONIZATION WITH ION-EXCHANGE TEXTILES. COMPARISON WITH CONVENTIONAL ELECTRODIALYSIS , 1998 .

[85]  H. Coster,et al.  A quantitative analysis of the voltage-current relationships of fixed charge membranes and the associated property of "punch-through". , 1965, Biophysical journal.

[86]  Qingfeng Guo,et al.  Recovery of acetic acid from dilute wastewater by means of bipolar membrane electrodialysis , 2000 .

[87]  E. Korngold,et al.  Fouling of anionselective membranes in electrodialysis , 1970 .

[88]  H. Strathmann,et al.  Development of bipolar membranes , 1988 .

[89]  Seung-Hyeon Moon,et al.  Effects of inorganic substances on water splitting in ion-exchange membranes; II. Optimal contents of inorganic substances in preparing bipolar membranes. , 2004, Journal of colloid and interface science.