A constitutive model for finite deformation response of layered polyurethane-montmorillonite nanocomposites

[1]  M. Rais-Rohani,et al.  Predicting the Elastic Properties of CNF/Thermoset Polymer Composites Considering the Effect of Interphase and Fiber Waviness , 2017 .

[2]  Anthony M. Waas,et al.  The effects of the interphase and strain gradients on the elasticity of layer by layer (LBL) polymer/clay nanocomposites , 2011 .

[3]  F. Zaïri,et al.  Constitutive modelling of the large inelastic deformation behaviour of rubber-toughened poly(methyl methacrylate): effects of strain rate, temperature and rubber-phase volume fraction , 2010 .

[4]  A. Waas,et al.  The Role of Nanoparticle Layer Separation in the Finite Deformation Response of Layered Polyurethane-Clay Nanocomposites , 2009 .

[5]  T. Boukharouba,et al.  Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites , 2009 .

[6]  E. Kontou,et al.  Micromechanical behaviour of particulate polymer nanocomposites , 2008 .

[7]  A. Waas,et al.  Ultrastrong and Stiff Layered Polymer Nanocomposites , 2007, Science.

[8]  Hassan Mahfuz,et al.  A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites , 2007 .

[9]  Ellen M Arruda,et al.  Structure and functional evaluation of tendon-skeletal muscle constructs engineered in vitro. , 2006, Tissue engineering.

[10]  Yan Wang,et al.  Constitutive Modeling of a Thermoplastic Olefin Over a Broad Range of Strain Rates , 2006 .

[11]  L. Brinson,et al.  Functionalized SWNT/polymer nanocomposites for dramatic property improvement , 2005 .

[12]  M. Boyce,et al.  Stress–strain behavior of thermoplastic polyurethanes , 2005 .

[13]  Frank T. Fisher,et al.  Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties , 2003 .

[14]  Dmitry Bedrov,et al.  A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite , 2003 .

[15]  Isaac M. Daniel,et al.  Characterization and modeling of mechanical behavior of polymer/clay nanocomposites , 2003 .

[16]  Nicholas A. Kotov,et al.  Ordered Layered Assemblies of Nanoparticles , 2001 .

[17]  Yan Wang,et al.  Characterization and Constitutive Modeling of a Plasticized Poly(vinyl Chloride) for a Broad Range of Strain Rates , 2001 .

[18]  Mary C. Boyce,et al.  Mechanical Behavior of Particle Filled Elastomers , 1999 .

[19]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[20]  S. Govindjee An evaluation of strain amplification concepts via Monte Carlo simulations of an ideal composite , 1997 .

[21]  O. K. Tse,et al.  Relaxations of confined chains in polymer nanocomposites: Glass transition properties of poly(ethylene oxide) intercalated in montmorillonite , 1997 .

[22]  M. Boyce,et al.  The large strain compression, tension, and simple shear of polycarbonate , 1994 .

[23]  M. Boyce,et al.  A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials , 1993 .

[24]  M. Boyce,et al.  Large inelastic deformation of glassy polymers. part I: rate dependent constitutive model , 1988 .

[25]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[26]  J. Halpin Stiffness and Expansion Estimates for Oriented Short Fiber Composites , 1969 .

[27]  L. Mullins,et al.  Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler‐reinforced vulcanized rubber , 1965 .

[28]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[29]  Bernard Budiansky,et al.  THEORETICAL PREDICTION OF PLASTIC STRAINS OF POLYCRYSTALS , 1961 .

[30]  M. Mooney,et al.  The viscosity of a concentrated suspension of spherical particles , 1951 .

[31]  V. Vand Viscosity of solutions and suspensions; theory. , 1948, The Journal of physical and colloid chemistry.

[32]  E. Guth Theory of Filler Reinforcement , 1945 .

[33]  H. M. Smallwood Limiting Law of the Reinforcement of Rubber , 1944 .

[34]  F. Zaïri,et al.  A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation , 2011 .

[35]  A. Waas,et al.  A closed-form, hierarchical, multi-interphase model for composites—Derivation, verification and application to nanocomposites , 2011 .

[36]  A. Kaushik Deformation Mechanisms in Polymer-Clay Nanocomposites. , 2010 .

[37]  Si-tae Noh,et al.  Preparation and Properties of Polyurethane Dispersions with Aromatic/Aliphatic Mixed Diisocyanate , 2009 .

[38]  G. Rutledge,et al.  Elastic Properties of a Single Lamella of Montmorillonite by Molecular Dynamics Simulation , 2004 .

[39]  M. Boyce,et al.  Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle , 2004 .

[40]  Jozef Bicerano,et al.  Micromechanics of nanocomposites: comparison of tensile and compressive elastic moduli, and prediction of effects of incomplete exfoliation and imperfect alignment on modulus , 2002 .

[41]  Mary C. Boyce,et al.  Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers , 1995 .

[42]  M. Boyce,et al.  Effects of Initial Anisotropy on the Finite Strain Deformation Behavior of Glassy Polymers , 1993 .

[43]  Mary C. Boyce,et al.  Evolution of plastic anisotropy in amorphous polymers during finite straining , 1993 .

[44]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .