On the vortex filament in 3-spaces and its generalizations

In this article, we devote to a mathematical survey on the theory of the vortex filament in 3-dimensional spaces and its generalizations. We shall present some effective geometric tools applied in the study, such as the Schrodinger flow, the geometric Korteweg-de Vries (KdV) flow and the generalized bi-Schrodinger flow, as well as the complex and para-complex structures. It should be mentioned that the investigation in the imaginary part of the octonions looks very fascinating, since it relates to almost complex structures and the G2 structure on $${\mathbb{S}^6}$$ . As a new result in this survey, we describe the equation of generalized bi-Schrodinger flows from ℝ1 into a Riemannian surface.

[1]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[2]  E. Musso,et al.  Hamiltonian flows on null curves , 2009, 0911.4467.

[3]  Zixiang Zhou,et al.  Darboux Transformations in Integrable Systems , 2005 .

[4]  Y. Fukumoto Three-dimensional motion of a vortex filament and its relation to the localized induction hierarchy , 2002 .

[5]  Youde Wang,et al.  Vortex filament on symmetric Lie algebras and generalized bi-Schrödinger flows , 2018 .

[6]  Igor Volovich,et al.  Anti-Kählerian manifolds , 2000 .

[7]  Wei Wang,et al.  The vortex filament in the Minkowski 3-space and generalized bi-Schrödinger maps , 2012 .

[8]  U. Pinkall Hamiltonian flows on the space of star-shaped curves , 1995 .

[9]  Changzheng Qu,et al.  Integrable equations arising from motions of plane curves , 2002 .

[10]  D. Alekseevsky,et al.  Homogeneous para-Kähler Einstein manifolds , 2009 .

[11]  Wei Wang,et al.  A motion of spacelike curves in the Minkowski 3-space and the KdV equation , 2010 .

[12]  G. Lamb,et al.  Solitons on moving space curves , 1977 .

[13]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[14]  A. Sukstanskii,et al.  Soliton relaxation in magnets , 1997 .

[15]  Petrich,et al.  The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane. , 1991, Physical review letters.

[16]  T. Gadzhimuradov,et al.  Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation , 2016 .

[17]  A. Fordy,et al.  Generalised KdV and MKdV equations associated with symmetric spaces , 1987 .

[18]  J. Langer Instabilities and pattern formation in crystal growth , 1980 .

[19]  Zixiang Zhou,et al.  Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry , 2005 .

[20]  Schrodinger flows on Grassmannians , 1999, math/9901086.

[21]  Qing Ding,et al.  The noncommutative KdV equation and its para-Kähler structure , 2014 .

[22]  P. M. Gadea,et al.  A Survey on Paracomplex Geometry , 1996 .

[23]  H. Helmholtz LXIII. On Integrals of the hydrodynamical equations, which express vortex-motion , 1858 .

[24]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[25]  Allan P. Fordy,et al.  Nonlinear Schrödinger equations and simple Lie algebras , 1983 .

[26]  J. Inoguchi,et al.  Schrödinger flows, binormal motion for curves and the second AKNS-hierarchies , 2004 .

[27]  K. Nakayama Motion of Curves in Hyperboloid in the Minkowski Space , 1998 .

[28]  E. Onodera Local existence of a fourth-order dispersive curve flow on locally Hermitian symmetric spaces and its application , 2016, Differential Geometry and its Applications.

[29]  R. Bryant Submanifolds and special structures on the octonians , 1982 .

[30]  K. Pohlmeyer,et al.  Integrable Hamiltonian systems and interactions through quadratic constraints , 1976 .

[31]  Peter J. Olver,et al.  Integrable Evolution Equations on Associative Algebras , 1998 .

[32]  Ding Qing,et al.  The complex 2-sphere in bm$\mathbb~C^3$and Schrödinger flows , 2020 .

[33]  Qing Ding,et al.  The almost complex structure on 𝕊6 and related Schrödinger flows , 2018, International Journal of Mathematics.

[34]  F. R. Hama,et al.  Localized‐Induction Concept on a Curved Vortex and Motion of an Elliptic Vortex Ring , 1965 .

[35]  V. Zakharov,et al.  Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet , 1979 .

[36]  H. Soner,et al.  Vortex Density Models for Superconductivity and Superfluidity , 2011, 1112.0293.

[37]  Joel Langer,et al.  Geometric realizations of Fordy–Kulish nonlinear Schrödinger systems , 2000 .

[38]  G. Taylor,et al.  The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  Richard C. Brower,et al.  Geometrical models of interface evolution , 1984 .

[40]  F. R. Hama Progressive Deformation of a Curved Vortex Filament by its Own Induction , 1962 .

[41]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[42]  Karen K. Uhlenbeck,et al.  On Schrödinger maps , 2003 .

[43]  W. Ding,et al.  Schrödinger flow of maps into symplectic manifolds , 1998 .

[44]  Albert Boggess,et al.  CR Manifolds and the Tangential Cauchy-Riemann Complex , 1991 .

[45]  Youde Wang,et al.  KdV GEOMETRIC FLOWS ON KÄHLER MANIFOLDS , 2011 .

[46]  Da Rios,et al.  On the motion of an unbounded fluid with a vortex filament of any shape , 1906 .

[47]  Joel Langer,et al.  Poisson geometry of the filament equation , 1991 .

[48]  Luigi Sante Da Rios Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque , 1906 .

[49]  H. K. Moffatt,et al.  Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity , 2000, Journal of Fluid Mechanics.

[50]  Tatyana S. Krasnopolskaya,et al.  Vortex rings: history and state of the art , 2012 .

[51]  G2-Congruence theorem for curves in purely imaginary octonions and its application , 2013 .

[52]  Shiping Zhong The almost complex (para-complex) structures on 6-pseudo-Riemannian spheres and related Schrödinger flows , 2020 .

[53]  H. Hasimoto,et al.  A soliton on a vortex filament , 1972, Journal of Fluid Mechanics.

[54]  Qing Ding,et al.  A note on the NLS and the Schrödinger flow of maps , 1998 .

[55]  I. Holopainen Riemannian Geometry , 1927, Nature.

[56]  Tevian Dray,et al.  The Geometry of the Octonions , 2015 .

[57]  The Fukumoto–Moffattʼs model in the vortex filament and generalized bi-Schrödinger maps , 2011 .

[58]  Uby,et al.  Vortex filament dynamics in plasmas and superconductors. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[59]  Zuo-nong Zhu,et al.  The Gauge Equivalent Structure of the Landau–Lifshitz Equation and Its Applications* , 2003 .

[60]  Y. Fukumoto,et al.  Three-dimensional distortions of a vortex filament with axial velocity , 1991, Journal of Fluid Mechanics.

[61]  H. Helmholtz Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. , 1858 .

[62]  Youde Wang,et al.  GEOMETRIC KdV FLOWS, MOTIONS OF CURVES AND THE THIRD-ORDER SYSTEM OF THE AKNS HIERARCHY , 2011 .

[63]  On holomorphic Riemannian geometry and submanifolds of Wick-related spaces , 2015, 1503.07354.

[64]  P. Santini,et al.  An elementary geometric characterization of the integrable motions of a curve , 1994 .