A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations

We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.

[1]  Petros Koumoutsakos,et al.  Inviscid Axisymmetrization of an Elliptical Vortex , 1997 .

[2]  Ciencias Computacionales,et al.  Adaptive Node Refinement Collocation Method for Partial Differential Equations , 2006 .

[3]  Ralf Wolke,et al.  Multirate Runge-Kutta schemes for advection equations , 2009 .

[4]  Robert D. Russell,et al.  Adaptivity with moving grids , 2009, Acta Numerica.

[5]  Salvatore Torquato,et al.  Optimized interactions for targeted self-assembly: application to a honeycomb lattice. , 2005, Physical review letters.

[6]  P. Koumoutsakos,et al.  A Lagrangian particle method for reaction–diffusion systems on deforming surfaces , 2010, Journal of mathematical biology.

[7]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[8]  P. Koumoutsakos MULTISCALE FLOW SIMULATIONS USING PARTICLES , 2005 .

[9]  P. Koumoutsakos,et al.  A Lagrangian particle level set method. , 2005 .

[10]  Abhinav Kumar,et al.  Algorithmic design of self-assembling structures , 2009, Proceedings of the National Academy of Sciences.

[11]  Chih‐Ping Wu,et al.  A DRK Interpolation-Based Collocation Method for the Analysis of Functionally Graded Piezoelectric Hollow Cylinders under Electro-Mechanical Loads , 2009 .

[12]  Robert D. Russell,et al.  Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .

[13]  Philip M. Morse,et al.  Diatomic Molecules According to the Wave Mechanics I: Electronic Levels of the Hydrogen Molecular Ion , 1929 .

[14]  Joong Chae Na,et al.  Improving Lookup Time Complexity of Compressed Suffix Arrays using Multi-ary Wavelet Tree , 2009, J. Comput. Sci. Eng..

[15]  A. Bertozzi,et al.  Pattern Formation Stability and Collapse in 2D Driven Particle Systems , 2006 .

[16]  Ivo F. Sbalzarini,et al.  PPM - A highly efficient parallel particle-mesh library for the simulation of continuum systems , 2006, J. Comput. Phys..

[17]  S. Shankar,et al.  A New Diffusion Procedure for Vortex Methods , 1996 .

[18]  Armin Iske,et al.  Two-Phase Flow Simulation by AMMoC, an Adaptive Meshfree Method of Characteristics , 2005 .

[19]  Michael Bergdorf,et al.  A Lagrangian Particle-Wavelet Method , 2006, Multiscale Model. Simul..

[20]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[21]  Petros Koumoutsakos,et al.  Vortex Methods with Spatially Varying Cores , 2000 .

[22]  Ahmed F. Ghoniem,et al.  A high resolution spatially adaptive vortex method for separating flows. Part I: Two-dimensional domains , 2009, J. Comput. Phys..

[23]  Michael Bergdorf,et al.  Multilevel Adaptive Particle Methods for Convection-Diffusion Equations , 2005, Multiscale Model. Simul..

[24]  Salvatore Torquato,et al.  Self-assembly of the simple cubic lattice with an isotropic potential. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Cristina H. Amon,et al.  A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics , 2010, Comput. Phys. Commun..

[26]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[27]  S. Chen,et al.  A meshless collocation method based on the differential reproducing kernel interpolation , 2010 .

[28]  Weimin Han,et al.  A reproducing kernel method with nodal interpolation property , 2003 .

[29]  Roger I. Tanner,et al.  Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow , 2010 .

[30]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[31]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[32]  Georges-Henri Cottet,et al.  A multiresolution remeshed Vortex-In-Cell algorithm using patches , 2011, J. Comput. Phys..

[33]  Ivo F. Sbalzarini,et al.  Discretization correction of general integral PSE Operators for particle methods , 2010, J. Comput. Phys..

[34]  Salvatore Torquato,et al.  Inverse optimization techniques for targeted self-assembly , 2008, 0811.0040.

[35]  Salvatore Torquato,et al.  Designed interaction potentials via inverse methods for self-assembly. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Man Mohan Rai,et al.  The use of solution adaptive grids in solving partial differential equations , 1982 .

[37]  L. Barba,et al.  Advances in viscous vortex methods—meshless spatial adaption based on radial basis function interpolation , 2005 .

[38]  Heikki Haario,et al.  Particle transport method for convection problems with reaction and diffusion , 2007 .

[39]  Ivo F. Sbalzarini,et al.  Fast neighbor lists for adaptive-resolution particle simulations , 2012, Comput. Phys. Commun..

[40]  Ivo F. Sbalzarini,et al.  Toward an Object-Oriented Core of the PPM Library , 2010 .

[41]  S. Jun,et al.  Multiresolution reproducing kernel particle methods , 1997 .

[42]  A. Iske,et al.  Grid-free adaptive semi-Lagrangian advection using radial basis functions , 2002 .

[43]  LakkisIssam,et al.  A high resolution spatially adaptive vortex method for separating flows. Part I , 2009 .

[44]  P. Koumoutsakos,et al.  Boundary Conditions for Viscous Vortex Methods , 1994 .

[45]  Thomas Y. Hou,et al.  Convergence of a variable blob vortex method for the Euler and Navier-Stokes equations , 1990 .

[46]  J. Monaghan,et al.  Extrapolating B splines for interpolation , 1985 .

[47]  Ahmed F. Ghoniem,et al.  Modified interpolation kernels for treating diffusion and remeshing in vortex methods , 2006, J. Comput. Phys..

[48]  Tim Colonius,et al.  A general deterministic treatment of derivatives in particle methods , 2002 .