Computation of Recommender System Using Localized Regularization

Online and offline targeting and recommendations are major topics in ecommerce. The topic is treated as Matrix Completion, Missing Values and Matrix Imputations in statistics. The main goal in all of these fields is to compute the unknown (missing) values in the data matrix. In computing or recovering the unknown entries of the matrix, overfitting may happen which is due to the lack of sufficient information and thus some penalization of the objective function in the form of regularization becomes necessary. This work is based on a different view of regularization, i.e., a localized regularization technique which leads to improvement in the estimation of the missing values.

[1]  R. Parker Understanding Inverse Theory , 1977 .

[2]  David Maxwell Chickering,et al.  Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..

[3]  I. Jolliffe Principal Component Analysis , 2002 .

[4]  D. Donoho,et al.  Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[6]  Valerie J. Trifts,et al.  Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids , 2000 .

[7]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[8]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[9]  Yoon Ho Cho,et al.  A personalized recommender system based on web usage mining and decision tree induction , 2002, Expert Syst. Appl..

[10]  John Riedl,et al.  Explaining collaborative filtering recommendations , 2000, CSCW '00.

[11]  J. Baumeister Stable solution of inverse problems , 1987 .

[12]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[13]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[14]  R. Gunst,et al.  Generalized ridge regression: a note on negative ridge parameters , 1983 .

[15]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[16]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[17]  Yurii Nesterov,et al.  Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..

[18]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[19]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[20]  Jure Leskovec,et al.  The role of social networks in online shopping: information passing, price of trust, and consumer choice , 2011, EC '11.

[21]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[22]  Donald W. Marquaridt Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .

[23]  Joseph A. Konstan,et al.  Content-Independent Task-Focused Recommendation , 2001, IEEE Internet Comput..

[24]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[25]  E.J. Candes Compressive Sampling , 2022 .

[26]  Rashmi R. Sinha,et al.  The role of transparency in recommender systems , 2002, CHI Extended Abstracts.

[27]  I. Jolliffe,et al.  A Modified Principal Component Technique Based on the LASSO , 2003 .

[28]  H. Engl,et al.  Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .

[29]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[30]  V. Morozov On the solution of functional equations by the method of regularization , 1966 .

[31]  Shai Avidan,et al.  Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms , 2005, NIPS.

[32]  Pei-Yu Sharon Chen,et al.  The Impact of Online Recommendations and Consumer Feedback on Sales , 2004, ICIS.

[33]  Bernd Hofmann,et al.  On the nature of ill-posedness of an inverse problem arising in option pricing , 2003 .

[34]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[35]  L. Eldén A note on the computation of the generalized cross-validation function for ill-conditioned least squares problems , 1984 .

[36]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[37]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[38]  Yoon Ho Cho,et al.  A personalized recommendation procedure for Internet shopping support , 2002, Electron. Commer. Res. Appl..

[39]  Teresa Reginska,et al.  A Regularization Parameter in Discrete Ill-Posed Problems , 1996, SIAM J. Sci. Comput..

[40]  Bernd Hofmann,et al.  Regularization for applied inverse and ill-posed problems : a numerical approach , 1986 .

[41]  J. N. R. Jeffers,et al.  Two Case Studies in the Application of Principal Component Analysis , 1967 .

[42]  Alexander Tuzhilin,et al.  Towards the Next Generation of Recommender Systems , 2010, ICE-B 2010.

[43]  Jure Leskovec,et al.  Supervised random walks: predicting and recommending links in social networks , 2010, WSDM '11.

[44]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[45]  Ricardo Otazo Low-Rank and Sparse Matrix Decomposition for Accelerated Dynamic MRI , 2013 .

[46]  L. Eldén Algorithms for the regularization of ill-conditioned least squares problems , 1977 .

[47]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[48]  G. Golub,et al.  The restricted singular value decomposition: properties and applications , 1991 .

[49]  Martina Maida,et al.  Explaining MCDM acceptance: A conceptual model of influencing factors , 2011, 2011 Federated Conference on Computer Science and Information Systems (FedCSIS).

[50]  Gene H. Golub,et al.  A local regularization method using multiple regularization levels , 2007 .

[51]  Juan Luis Varona,et al.  Complex networks and decentralized search algorithms , 2006 .

[52]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[53]  I. Jolliffe Rotation of principal components: choice of normalization constraints , 1995 .

[54]  Gene H. Golub,et al.  Algorithm 358: singular value decomposition of a complex matrix [F1, 4, 5] , 1969, CACM.

[55]  Bracha Shapira,et al.  Recommender Systems Handbook , 2015, Springer US.

[56]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[57]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, NIPS 2004.

[58]  Mark Claypool,et al.  Combining Content-Based and Collaborative Filters in an Online Newspaper , 1999, SIGIR 1999.

[59]  H. Raghav Rao,et al.  A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents , 2008, Decis. Support Syst..

[60]  Misha Elena Kilmer,et al.  Choosing Regularization Parameters in Iterative Methods for Ill-Posed Problems , 2000, SIAM J. Matrix Anal. Appl..

[61]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[62]  Ash A. Alizadeh,et al.  'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns , 2000, Genome Biology.

[63]  Yehuda Koren,et al.  The BellKor Solution to the Netflix Grand Prize , 2009 .

[64]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[65]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[66]  Young U. Ryu,et al.  A group recommendation system for online communities , 2010, Int. J. Inf. Manag..

[67]  Trevor Hastie,et al.  Handwritten Digit Recognition via Deformable Prototypes , 1994 .

[68]  Bradley N. Miller,et al.  Social Information Filtering : Algorithms for Automating “ Word of Mouth , ” , 2017 .

[69]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[70]  Jorge Cadima Departamento de Matematica Loading and correlations in the interpretation of principle compenents , 1995 .

[71]  R. Armstrong The Long Tail: Why the Future of Business Is Selling Less of More , 2008 .

[72]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[73]  Emmanuel J. Candès,et al.  Randomized Algorithms for Low-Rank Matrix Factorizations: Sharp Performance Bounds , 2013, Algorithmica.

[74]  John Riedl,et al.  Sparsity, scalability, and distribution in recommender systems , 2001 .

[75]  Vitaly Shmatikov,et al.  Robust De-anonymization of Large Sparse Datasets , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[76]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[77]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[78]  Jure Leskovec,et al.  Correcting for missing data in information cascades , 2011, WSDM '11.

[79]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[80]  Tong Zhang,et al.  Empirical Study of Recommender Systems Using Linear Classifiers , 2001, PAKDD.

[81]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[82]  W. Gander On the linear least squares problem with a quadratic constraint , 1978 .

[83]  K. Miller Least Squares Methods for Ill-Posed Problems with a Prescribed Bound , 1970 .

[84]  Torsten Hein,et al.  Some Analysis of Tikhonov Regularization for the Inverse Problem of Option Pricing in the Price-Dependent Case , 2005 .

[85]  Emmanuel J. Candès,et al.  Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements , 2010, ArXiv.

[86]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[87]  A. Morelli Inverse Problem Theory , 2010 .