Deep Sets

We study the problem of designing models for machine learning tasks defined on sets. In contrast to the traditional approach of operating on fixed dimensional vectors, we consider objective functions defined on sets and are invariant to permutations. Such problems are widespread, ranging from the estimation of population statistics, to anomaly detection in piezometer data of embankment dams, to cosmology. Our main theorem characterizes the permutation invariant objective functions and provides a family of functions to which any permutation invariant objective function must belong. This family of functions has a special structure which enables us to design a deep network architecture that can operate on sets and which can be deployed on a variety of scenarios including both unsupervised and supervised learning tasks. We demonstrate the applicability of our method on population statistic estimation, point cloud classification, set expansion, and outlier detection.

[1]  J. Marsden,et al.  Elementary classical analysis , 1974 .

[2]  M. S. Roberts Galactic astronomy. , 1981, Science.

[3]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[4]  A. Szalay,et al.  Slicing Through Multicolor Space: Galaxy Redshifts from Broadband Photometry , 1995, astro-ph/9508100.

[5]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[6]  Ben Taskar,et al.  Max-Margin Markov Networks , 2003, NIPS.

[7]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[8]  Chiew-Lan Tai,et al.  A mesh reconstruction algorithm driven by an intrinsic property of a point cloud , 2004, Comput. Aided Des..

[9]  R. Manmatha,et al.  Multiple Bernoulli relevance models for image and video annotation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[10]  Laura A. Dabbish,et al.  Labeling images with a computer game , 2004, AAAI Spring Symposium: Knowledge Collection from Volunteer Contributors.

[11]  L. Bottou,et al.  Training Invariant Support Vector Machines using Selective Sampling , 2005 .

[12]  B. Curgus,et al.  Roots and polynomials as Homeomorphic spaces , 2005, math/0502037.

[13]  Katherine A. Heller,et al.  Bayesian Sets , 2005, NIPS.

[14]  Michael Grubinger,et al.  Analysis and evaluation of visual information systems performance , 2007 .

[15]  Vladimir Pavlovic,et al.  A New Baseline for Image Annotation , 2008, ECCV.

[16]  Cordelia Schmid,et al.  TagProp: Discriminative metric learning in nearest neighbor models for image auto-annotation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[17]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[18]  W. Marsden I and J , 2012 .

[19]  Barnabás Póczos,et al.  Support Distribution Machines , 2012, ArXiv.

[20]  Bernhard Schölkopf,et al.  Learning from Distributions via Support Measure Machines , 2012, NIPS.

[21]  Kilian Q. Weinberger,et al.  Fast Image Tagging , 2013, ICML.

[22]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[23]  Bernhard Schölkopf,et al.  Domain Generalization via Invariant Feature Representation , 2013, ICML.

[24]  Barnabás Póczos,et al.  Distribution-Free Distribution Regression , 2013, AISTATS.

[25]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[26]  Barnabás Póczos,et al.  Distribution to Distribution Regression , 2013, ICML.

[27]  Pedro M. Domingos,et al.  Deep Symmetry Networks , 2014, NIPS.

[28]  Claire Cardie,et al.  Deep Recursive Neural Networks for Compositionality in Language , 2014, NIPS.

[29]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[30]  Xu Chen,et al.  Unsupervised Deep Haar Scattering on Graphs , 2014, NIPS.

[31]  Anima Anandkumar,et al.  Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..

[32]  E. Rykoff,et al.  redMaPPer II: X-RAY AND SZ PERFORMANCE BENCHMARKS FOR THE SDSS CATALOG , 2013, 1303.3373.

[33]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[34]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[35]  Danica J. Sutherland,et al.  DYNAMICAL MASS MEASUREMENTS OF CONTAMINATED GALAXY CLUSTERS USING MACHINE LEARNING , 2015, 1509.05409.

[36]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[37]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[39]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[40]  James H. Garrett,et al.  Exploration and evaluation of AR, MPCA and KL anomaly detection techniques to embankment dam piezometer data , 2015, Adv. Eng. Informatics.

[41]  Zhichao Zhou,et al.  DeepPano: Deep Panoramic Representation for 3-D Shape Recognition , 2015, IEEE Signal Processing Letters.

[42]  Kevin Leyton-Brown,et al.  Deep Learning for Predicting Human Strategic Behavior , 2016, NIPS.

[43]  Barnabás Póczos,et al.  Estimating Cosmological Parameters from the Dark Matter Distribution , 2016, ICML.

[44]  Felix A Faber,et al.  Machine Learning Energies of 2 Million Elpasolite (ABC_{2}D_{6}) Crystals. , 2015, Physical review letters.

[45]  Nathaniel Virgo,et al.  Permutation-equivariant neural networks applied to dynamics prediction , 2016, ArXiv.

[46]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[47]  Rob Fergus,et al.  Learning Multiagent Communication with Backpropagation , 2016, NIPS.

[48]  Max Welling,et al.  Group Equivariant Convolutional Networks , 2016, ICML.

[49]  Jiajun Wu,et al.  Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling , 2016, NIPS.

[50]  Theodore Lim,et al.  Generative and Discriminative Voxel Modeling with Convolutional Neural Networks , 2016, ArXiv.

[51]  Samy Bengio,et al.  Order Matters: Sequence to sequence for sets , 2015, ICLR.

[52]  Arthur Gretton,et al.  Learning Theory for Distribution Regression , 2014, J. Mach. Learn. Res..

[53]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[54]  Joshua B. Tenenbaum,et al.  A Compositional Object-Based Approach to Learning Physical Dynamics , 2016, ICLR.

[55]  Bernhard Schölkopf,et al.  Discovering Causal Signals in Images , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).