The sharp weighted bound for general Calderón-Zygmund operators

For a general Calderon‐Zygmund operator T on R N , it is shown that kTfkL2(w) C(T) sup Q A Q w Q w 1 a k fkL2(w) for all Muckenhoupt weights w 2 A2. This optimal estimate was known as the A2 conjecture. A recent result of Perez‐Treil‐Volberg reduced the problem to a testing condition on indicator functions, which is verified in this paper. The proof consists of the following elements: (i) a variant of the Nazarov‐ Treil‐Volberg method of random dyadic systems with just one random system and completely without “bad” parts; (ii) a resulting representation of a general Calderon‐Zygmund operator as an average of “dyadic shifts;” and (iii) improvements of the Lacey‐Petermichl‐Reguera estimates for these dyadic shifts, which allow summing up the series in the obtained representation.

[1]  T. Hytönen The vector-valued non-homogeneous Tb theorem , 2008 .

[2]  W. Schachermayer,et al.  Singular integral operators: a martingale approach , 1991 .

[3]  Fedor Nazarov,et al.  TheTb-theorem on non-homogeneous spaces , 2003 .

[4]  A. Volberg,et al.  Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular , 2002 .

[5]  A. Lerner A pointwise estimate for the local sharp maximal function with applications to singular integrals , 2010 .

[6]  A. Vagharshakyan RECOVERING SINGULAR INTEGRALS FROM HAAR SHIFTS , 2009, 0911.4968.

[7]  T. Hytönen,et al.  Non-homogeneous Tb Theorem and Random Dyadic Cubes on Metric Measure Spaces , 2009, 0911.4387.

[8]  S. Treil,et al.  On $A_2$ conjecture and corona decomposition of weights , 2010, 1006.2630.

[9]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[10]  M. Lacey,et al.  Weak and Strong-type estimates for Haar Shift Operators: Sharp power on the $A_p$ characteristic , 2009, 0911.0713.

[11]  A. Volberg,et al.  Random "dyadic" lattice in geometrically doubling metric space and $A_2$ conjecture , 2011, 1103.5246.

[12]  Two weight inequalities for individual Haar multipliers and other well localized operators , 2007, math/0702758.

[13]  Yang Xiang Fast Algorithms for Calderón–Zygmund Singular Integral Operators , 1996 .

[14]  M. Lacey,et al.  Sharp A2 inequality for Haar shift operators , 2009, 0906.1941.

[15]  Vector-valued non-homogeneous Tb theorem on metric measure spaces , 2010, 1004.3176.

[16]  A. Volberg,et al.  A simple sharp weighted estimate of the dyadic shifts on metric spaces with geometric doubling , 2011, 1104.4893.

[17]  A. Lerner Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals , 2010, 1005.1422.

[18]  M. Lacey,et al.  Weak and strong type estimates for maximal truncations of Calderón-Zygmund operators on Ap weighted spaces , 2011, 1103.5229.

[19]  Michael Christ,et al.  A T(b) theorem with remarks on analytic capacity and the Cauchy integral , 1990 .

[20]  S. Petermichl The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A p characteristic , 2007 .

[21]  E. Saksman,et al.  Beltrami operators in the plane , 2001 .

[22]  M. Lacey,et al.  A characterization of two weight norm inequalities for maximal singular integrals with one doubling measure , 2008, 0807.0246.

[23]  M. Lacey,et al.  Weak and Strong type $ A_p$ Estimates for Calderón-Zygmund Operators , 2010, 1006.2530.

[24]  L. Grafakos,et al.  Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces , 2005 .

[25]  J. Wilson,et al.  The intrinsic square function , 2007 .

[26]  S. Petermichl The sharp weighted bound for the Riesz transforms , 2007 .

[27]  S. Buckley Estimates for operator norms on weighted spaces and reverse Jensen inequalities , 1993 .

[28]  A. Volberg,et al.  Sharp estimate of the Ahlfors-Beurling operator via averaging martingale transforms , 2003 .

[29]  Carlos Perez,et al.  Sharp weighted estimates for approximating dyadic operators , 2010, 1001.4724.

[30]  S. Treil,et al.  Two weight estimate for the Hilbert transform and corona decomposition for non-doubling measures , 2010, 1003.1596.