The sharp weighted bound for general Calderón-Zygmund operators
暂无分享,去创建一个
[1] T. Hytönen. The vector-valued non-homogeneous Tb theorem , 2008 .
[2] W. Schachermayer,et al. Singular integral operators: a martingale approach , 1991 .
[3] Fedor Nazarov,et al. TheTb-theorem on non-homogeneous spaces , 2003 .
[4] A. Volberg,et al. Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular , 2002 .
[5] A. Lerner. A pointwise estimate for the local sharp maximal function with applications to singular integrals , 2010 .
[6] A. Vagharshakyan. RECOVERING SINGULAR INTEGRALS FROM HAAR SHIFTS , 2009, 0911.4968.
[7] T. Hytönen,et al. Non-homogeneous Tb Theorem and Random Dyadic Cubes on Metric Measure Spaces , 2009, 0911.4387.
[8] S. Treil,et al. On $A_2$ conjecture and corona decomposition of weights , 2010, 1006.2630.
[9] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[10] M. Lacey,et al. Weak and Strong-type estimates for Haar Shift Operators: Sharp power on the $A_p$ characteristic , 2009, 0911.0713.
[11] A. Volberg,et al. Random "dyadic" lattice in geometrically doubling metric space and $A_2$ conjecture , 2011, 1103.5246.
[12] Two weight inequalities for individual Haar multipliers and other well localized operators , 2007, math/0702758.
[13] Yang Xiang. Fast Algorithms for Calderón–Zygmund Singular Integral Operators , 1996 .
[14] M. Lacey,et al. Sharp A2 inequality for Haar shift operators , 2009, 0906.1941.
[15] Vector-valued non-homogeneous Tb theorem on metric measure spaces , 2010, 1004.3176.
[16] A. Volberg,et al. A simple sharp weighted estimate of the dyadic shifts on metric spaces with geometric doubling , 2011, 1104.4893.
[17] A. Lerner. Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals , 2010, 1005.1422.
[18] M. Lacey,et al. Weak and strong type estimates for maximal truncations of Calderón-Zygmund operators on Ap weighted spaces , 2011, 1103.5229.
[19] Michael Christ,et al. A T(b) theorem with remarks on analytic capacity and the Cauchy integral , 1990 .
[20] S. Petermichl. The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A p characteristic , 2007 .
[21] E. Saksman,et al. Beltrami operators in the plane , 2001 .
[22] M. Lacey,et al. A characterization of two weight norm inequalities for maximal singular integrals with one doubling measure , 2008, 0807.0246.
[23] M. Lacey,et al. Weak and Strong type $ A_p$ Estimates for Calderón-Zygmund Operators , 2010, 1006.2530.
[24] L. Grafakos,et al. Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces , 2005 .
[25] J. Wilson,et al. The intrinsic square function , 2007 .
[26] S. Petermichl. The sharp weighted bound for the Riesz transforms , 2007 .
[27] S. Buckley. Estimates for operator norms on weighted spaces and reverse Jensen inequalities , 1993 .
[28] A. Volberg,et al. Sharp estimate of the Ahlfors-Beurling operator via averaging martingale transforms , 2003 .
[29] Carlos Perez,et al. Sharp weighted estimates for approximating dyadic operators , 2010, 1001.4724.
[30] S. Treil,et al. Two weight estimate for the Hilbert transform and corona decomposition for non-doubling measures , 2010, 1003.1596.