Characterization Methods for Shape-Memory Polymers

Shape-memory polymers (SMPs) are able to fix a temporary deformed shape and recover their original permanent shape upon application of an external stimulus such as heat or light. A shape-memory functionalization can be realized for polymer based materials with an appropriate morphology by application of a specific shape-memory creation procedure (SMCP). Specific characterization methods have been tailored to explore the structure-function relations of SMPs in respective applications. This paper reviews characterization methods on different length scales from the molecular to the macroscopic level.

[1]  Lia Stanciu,et al.  Biotemplated synthesis of metallic nanoparticle chains on an α-synuclein fiber scaffold , 2008 .

[2]  Shape memory polymers and their nanocomposites: a review of science and technology of new multifunctional materials. , 2008 .

[3]  Marc Behl,et al.  Actively moving polymers. , 2006, Soft matter.

[4]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[5]  Hisaaki Tobushi,et al.  Thermomechanical constitutive model of shape memory polymer , 2001 .

[6]  C. Das,et al.  Structure, shrinkability and thermal property correlations of ethylene vinyl acetate (EVA)/carboxylated nitrile rubber (XNBR) polymer blends , 2000 .

[7]  Hisaaki Tobushi,et al.  Thermomechanical Constitutive Modeling in Shape Memory Polymer of Polyurethane Series , 1997 .

[8]  Dimitris C. Lagoudas,et al.  A constitutive theory for shape memory polymers. Part II: A linearized model for small deformations , 2008 .

[9]  Jinlian Hu Shape Memory Polymers and Textiles , 2007 .

[10]  R. Langer,et al.  Polymeric triple-shape materials , 2006, Proceedings of the National Academy of Sciences.

[11]  Jin-Sing Lin,et al.  Study on shape‐memory behavior of polyether‐based polyurethanes. I. Influence of the hard‐segment content , 1998 .

[12]  Shunichi Hayashi,et al.  Structure and properties of shape-memory polyurethane block copolymers , 1996 .

[13]  Seyed Hassan Jafari,et al.  Investigation and Modeling of Temperature Dependence Recovery Behavior of Shape‐Memory Crosslinked Polyethylene , 2007 .

[14]  S. Nutt,et al.  Characterization of nanocellulose‐ reinforced shape memory polyurethanes , 2008 .

[15]  J. Morshedian,et al.  Modeling of Shape Memory Induction and Recovery in Heat-Shrinkable Polymers , 2005 .

[16]  H. Radusch,et al.  Multiple shape-memory behavior and thermal-mechanical properties of peroxide cross-linked blends of linear and short-chain branched polyethylenes , 2008 .

[17]  N. Kasai,et al.  X-ray diffraction by macromolecules , 2005 .

[18]  Jinlian Hu,et al.  Smart polymer fibers with shape memory effect , 2006 .

[19]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[20]  A. Hiltner,et al.  Hierarchical structure in polymeric materials. , 1987, Science.

[21]  Q. Cao,et al.  Structure and Mechanical Properties of Shape Memory Polyurethane Based on Hyperbranched Polyesters , 2006 .

[22]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[23]  A. Bhattacharyya,et al.  Analysis of the isothermal mechanical response of a shape memory polymer rheological model , 2000 .

[24]  Ingo Bellin,et al.  Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains , 2007 .

[25]  S. Kelch,et al.  Amorphous, Elastic AB Copolymer Networks from Acrylates and Poly[(L‐lactide)‐ran‐glycolide]dimethacrylates , 2008 .

[26]  M. Reading,et al.  Modulated differential scanning calorimetry , 1993 .

[28]  Yiping Liu,et al.  Thermomechanical recovery couplings of shape memory polymers in flexure , 2003 .

[29]  R. Langer,et al.  Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications , 2002, Science.

[30]  J. E. Mark,et al.  Physical Properties of Polymers: Index , 2004 .

[31]  A. Lendlein,et al.  Polymers Move in Response to Light , 2006 .

[32]  Andreas Lendlein,et al.  Shape-memory polymer networks from oligo[(epsilon-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. , 2007, Biomacromolecules.

[33]  Andreas Lendlein,et al.  Investigation of parameters to achieve temperatures required to initiate the shape-memory effect of magnetic nanocomposites by inductive heating , 2009 .

[34]  R. Vaia,et al.  NMR Characterization of Low Hard Segment Thermoplastic Polyurethane/Carbon Nanofiber Composites , 2008 .

[35]  I. J. Rao,et al.  Constitutive modeling of the mechanics associated with crystallizable shape memory polymers , 2006 .

[36]  Lide Zhang,et al.  Recovery as a measure of oriented crystalline structure in poly(ether ester)s based on poly(ethylene oxide) and poly(ethylene terephthalate) used as shape memory polymers , 1999 .

[37]  Andreas Lendlein,et al.  Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. , 2005, Angewandte Chemie.

[38]  M. Razzaq,et al.  Thermomechanical studies of aluminum nitride filled shape memory polymer composites , 2007 .

[39]  Solid-State NMR Characterization of Biodegradable Shape-Memory Polymer Networks , 2005 .

[40]  Patrick T. Mather,et al.  Combined One-Way and Two-Way Shape Memory in a Glass-Forming Nematic Network , 2009 .

[41]  Patrick T. Mather,et al.  Shape memory and nanostructure in poly(norbornyl-POSS) copolymers , 2000 .

[42]  A. Lendlein,et al.  Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A Lendlein,et al.  Shape-memory polymers as stimuli-sensitive implant materials. , 2005, Clinical hemorheology and microcirculation.

[44]  Shinzo Kohjiya,et al.  Crystallization and stress relaxation in highly stretched samples of natural rubber and its synthetic analogue , 2006 .

[45]  Thao D. Nguyen,et al.  A thermoviscoelastic model for amorphous shape memory polymers: Incorporating structural and stress relaxation , 2008 .

[46]  S. Kelch,et al.  Synthesis, Shape‐Memory Functionality and Hydrolytical Degradation Studies on Polymer Networks from Poly(rac‐lactide)‐b‐poly(propylene oxide)‐b‐poly(rac‐lactide) dimethacrylates , 2006 .

[47]  Robin Shandas,et al.  Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. , 2007, Biomaterials.

[48]  Jin-Sing Lin,et al.  Study on shape‐memory behavior of polyether‐based polyurethanes. II. Influence of soft‐segment molecular weight , 1998 .

[49]  Leo-Wang Chen,et al.  The mechanical-viscoelastic model and WLF relationship in shape memorized linear ether-type polyurethanes , 1999 .

[50]  Yong-Chan Chung,et al.  Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect , 2001 .

[51]  Xiabin Jing,et al.  Poly(ε-caprolactone) Polyurethane and Its Shape-Memory Property† , 2005 .

[52]  Andreas Lendlein,et al.  Biodegradable Shape-Memory Polymer Networks: Characterization with Solid-State NMR , 2005 .

[53]  Mao Xu,et al.  Shape memory effect of polyethylene/nylon 6 graft copolymers , 1998 .

[54]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[55]  Yiping Liu,et al.  Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling , 2006 .

[56]  A. Sircar,et al.  The Application of Dynamic Mechanical Methods to T g Determination in Polymers: An Overview , 1994 .

[57]  Marc Behl,et al.  Shape-Memory Polymers and Shape-Changing Polymers , 2009 .

[58]  P. Navard,et al.  The height of DSC phase transition peaks , 1984 .

[59]  Yiping Liu,et al.  Thermomechanics of the shape memory effect in polymers for biomedical applications. , 2005, Journal of biomedical materials research. Part A.

[60]  J. Cowie,et al.  Polymers: Chemistry and Physics of Modern Materials , 1973 .

[61]  Ken Gall,et al.  Shape Memory Mechanics of an Elastic Memory Composite Resin , 2003 .

[62]  P. Flory,et al.  Statistical Mechanics of Cross‐Linked Polymer Networks I. Rubberlike Elasticity , 1943 .

[63]  Dimitris C. Lagoudas,et al.  A constitutive theory for shape memory polymers. Part I: Large deformations , 2008 .

[64]  Vratislav Kafka,et al.  Shape memory polymers: A mesoscale model of the internal mechanism leading to the SM phenomena , 2008 .

[65]  A. Lendlein,et al.  Shape-memory polymers. , 2002, Angewandte Chemie.

[66]  Richard C. Larock,et al.  New soybean oil–styrene–divinylbenzene thermosetting copolymers. v. shape memory effect , 2002 .

[67]  N. Stribeck X-Ray Scattering of Soft Matter , 2007 .

[68]  Y. Shirakawa,et al.  Crystal transformation of styrene-butadiene block copolymer , 1994 .

[69]  A. Lendlein,et al.  Degradable shape-memory polymer networks from oligo[(l-lactide)-ran-glycolide]dimethacrylates. , 2007, Soft matter.

[70]  Robert Langer,et al.  Shape-memory polymer networks from oligo(?-caprolactone)dimethacrylates , 2005 .

[71]  Ken Gall,et al.  Molecular dynamics simulations of the shape-memory behaviour of polyisoprene , 2007 .

[72]  Andreas Lendlein,et al.  Degradable, Multifunctional Polymeric Biomaterials with Shape-Memory , 2005 .

[73]  Patrick T. Mather,et al.  Chemically Cross-Linked Polycyclooctene: Synthesis, Characterization, and Shape Memory Behavior , 2002 .

[74]  B. Weidenfeller,et al.  Mechanical spectroscopy of magnetite filled polyurethane shape memory polymers , 2007 .

[75]  K. Takeda,et al.  Shape‐memory pore structure in porous crosslinked polystyrenes , 1988 .

[76]  A. Lendlein,et al.  Shape-memory polymers , 2002 .

[77]  I. Ward,et al.  Shrinkage, shrinkage force and the structure of ultra high modulus polyethylenes , 1982 .

[78]  Thao D. Nguyen,et al.  Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers , 2008 .

[79]  G. Höhne,et al.  Differential Scanning Calorimetry , 2007 .

[80]  P. Couchman,et al.  Ruthenium tetraoxide staining of polymers for electron microscopy , 1983 .

[81]  LaShanda T. J. Korley,et al.  Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes , 2006 .

[82]  M. Maugey,et al.  Shape and Temperature Memory of Nanocomposites with Broadened Glass Transition , 2007, Science.

[83]  Yiping Liu,et al.  Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers , 2006 .

[84]  Mao Xu,et al.  Thermally stimulated shape-memory behavior of ethylene oxide-ethylene terephthalate segmented copolymer , 1997 .

[85]  K. Sakurai,et al.  Shape-memorizable styrene-butadiene block copolymer. I. Thermal and mechanical behaviors and structural change with deformation , 1997 .

[86]  J. R. Lin,et al.  Shape‐memorized crosslinked ester‐type polyurethane and its mechanical viscoelastic model , 1999 .

[87]  Shen‐guo Wang,et al.  Biodegradable shape‐memory polymer—polylactide‐co‐poly(glycolide‐co‐caprolactone) multiblock copolymer , 2005 .

[88]  Marc Behl,et al.  One‐Step Process for Creating Triple‐Shape Capability of AB Polymer Networks , 2009 .

[89]  Andreas Lendlein,et al.  Shape-Memory Polymer Composites , 2009 .

[90]  C. Das,et al.  Studies on blends of ethylene vinyl acetate and polyacrylic rubber with reference to their shrinkability , 2000 .

[91]  Kumbakonam R. Rajagopal,et al.  A thermodynamic framework for the modeling of crystallizable shape memory polymers , 2008 .