Standard Approach to Basic Modal Logics

In this Chapter we focus on the class of non-axiomatic systems that are called standard in the sense of keeping intact all the machinery of suitable systems for classical logic. Extensions are obtained by means of additional modal rules. This group covers modal extensions of standard Gentzen SC, Hintikka-style modal TS, and some ND systems.

[1]  Rajeev Goré,et al.  Cut-free sequent and tableau systems for propositional Diodorean modal logics , 1994, Stud Logica.

[2]  Maria da Paz N. Medeiros A new S4 classical modal logic in natural deduction , 2006, J. Symb. Log..

[3]  R. Feys,et al.  Les systèmes formalisés des modalités aristotéliciennes , 1950 .

[4]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[5]  Jan von Plato,et al.  Normal derivability in modal logic , 2005, Math. Log. Q..

[6]  Ana Teresa C. Martins,et al.  Full classical S5 in natural deduction with weak normalization , 2008, Ann. Pure Appl. Log..

[7]  Wolfgang Rautenberg,et al.  Modal tableau calculi and interpolation , 1983, J. Philos. Log..

[8]  Ludwik Borkowski,et al.  A logical system based on rules and its application in teaching mathematical logic , 1958 .

[9]  Andrzej Indrzejczak,et al.  SEQUENT CALCULI FOR MONOTONIC MODAL LOGICS , 2005 .

[10]  Haskell B. Curry,et al.  The elimination theorem when modality is present , 1952, Journal of Symbolic Logic.

[11]  David F. Siemens Fitch-style rules for many modal logics , 1977, Notre Dame J. Formal Log..

[12]  Saverio Cittadini,et al.  Normal Natural Deduction Proofs (in Non-classical Logics) , 2005, Mechanizing Mathematical Reasoning.

[13]  R. A. Bull,et al.  Basic Modal Logic , 1984 .

[14]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.

[15]  Haskell B. Curry,et al.  A Theory Of Formal Deducibility , 1950 .

[16]  Claudio Cerrato Natural Deduction Based upon Strict Implication for Normal Modal Logics , 1994, Notre Dame J. Formal Log..

[17]  Thomas W. Satre,et al.  Natural deduction rules for modal logics , 1972, Notre Dame J. Formal Log..

[18]  Melvin Fitting,et al.  Destructive Modal Resolution , 1990, J. Log. Comput..

[19]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[20]  Thierry Lucas,et al.  Sequent Calculi and Decision Procedures for Weak Modal Systems , 2000, Stud Logica.

[21]  H. Wansing Displaying Modal Logic , 1998 .

[22]  James W. Garson Modal Logic for Philosophers , 2006 .

[23]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[24]  R. L. Goodstein,et al.  Provability in logic , 1959 .

[25]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[26]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[27]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[28]  John Hawthorn,et al.  Natural Deduction in Normal Modal Logic , 1990, Notre Dame J. Formal Log..

[29]  G. F. Shvarts,et al.  Gentzen Style Systems for K45 and K45D , 1989, Logic at Botik.

[30]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[31]  E. J. Lemmon,et al.  New foundations for Lewis modal systems , 1957, Journal of Symbolic Logic.

[32]  Heinrich Wansing,et al.  Sequent Systems for Modal Logics , 2002 .

[33]  Kazuo Matsumoto,et al.  Gentzen method in modal calculi. II , 1957 .