Outlaw Distributions and Locally Decodable Codes

Locally decodable codes (LDCs) are error correcting codes that allow for decoding of a single message bit using a small number of queries to a corrupted encoding. Despite decades of study, the optimal trade-off between query complexity and codeword length is far from understood. In this work, we give a new characterization of LDCs using distributions over Boolean functions whose expectation is hard to approximate (in~$L_\infty$~norm) with a small number of samples. We coin the term `outlaw distributions' for such distributions since they `defy' the Law of Large Numbers. We show that the existence of outlaw distributions over sufficiently `smooth' functions implies the existence of constant query LDCs and vice versa. We give several candidates for outlaw distributions over smooth functions coming from finite field incidence geometry, additive combinatorics and from hypergraph (non)expanders. We also prove a useful lemma showing that (smooth) LDCs which are only required to work on average over a random message and a random message index can be turned into true LDCs at the cost of only constant factors in the parameters.

[1]  D. Conlon,et al.  Quasirandom Cayley graphs , 2016, 1603.03025.

[2]  Shubhangi Saraf,et al.  Locally Testable and Locally Correctable Codes approaching the Gilbert-Varshamov Bound , 2018, IEEE Trans. Inf. Theory.

[3]  Nikos Frantzikinakis,et al.  Random differences in Szemerédi’s theorem and related results , 2016 .

[4]  J. Briët On Embeddings of $\ell_1^k$ from Locally Decodable Codes , 2016 .

[5]  Shravas Rao,et al.  Arithmetic expanders and deviation bounds for random tensors , 2016, 1610.03428.

[6]  V. Rödl,et al.  Discrepancy and eigenvalues of Cayley graphs , 2016, 1602.02291.

[7]  Or Meir,et al.  High-rate locally-correctable and locally-testable codes with sub-polynomial query complexity , 2015, STOC.

[8]  Jop Briët,et al.  On Embeddings of l1k from Locally Decodable Codes , 2016, Electron. Colloquium Comput. Complex..

[9]  Amir Shpilka,et al.  On the structure of boolean functions with small spectral norm , 2013, Electron. Colloquium Comput. Complex..

[10]  Zeev Dvir,et al.  2-Server PIR with Sub-Polynomial Communication , 2014, STOC.

[11]  Avishay Tal,et al.  Two Structural Results for Low Degree Polynomials and Applications , 2014, Electron. Colloquium Comput. Complex..

[12]  Terence Tao,et al.  Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory , 2013, 1310.6482.

[13]  Terence Tao,et al.  Higher Order Fourier Analysis , 2012 .

[14]  Assaf Naor,et al.  Locally decodable codes and the failure of cotype for projective tensor products , 2012, ArXiv.

[15]  Cheng Huang,et al.  On the Locality of Codeword Symbols , 2011, IEEE Transactions on Information Theory.

[16]  David P. Woodruff A Quadratic Lower Bound for Three-Query Linear Locally Decodable Codes over Any Field , 2010, Journal of Computer Science and Technology.

[17]  Sergey Yekhanin,et al.  Locally Decodable Codes , 2012, Found. Trends Theor. Comput. Sci..

[18]  Shubhangi Saraf,et al.  High-rate codes with sublinear-time decoding , 2014, Electron. Colloquium Comput. Complex..

[19]  Nikos Frantzikinakis,et al.  Random Sequences and Pointwise Convergence of Multiple Ergodic Averages , 2010, 1012.1130.

[20]  Klim Efremenko,et al.  3-Query Locally Decodable Codes of Subexponential Length , 2008 .

[21]  Zeev Dvir,et al.  On the size of Kakeya sets in finite fields , 2008, 0803.2336.

[22]  Sergey Yekhanin,et al.  Towards 3-query locally decodable codes of subexponential length , 2008, JACM.

[23]  Madhu Sudan,et al.  Sparse Random Linear Codes are Locally Decodable and Testable , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[24]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[25]  David P. Woodruff New Lower Bounds for General Locally Decodable Codes , 2007, Electron. Colloquium Comput. Complex..

[26]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[27]  Ronald de Wolf,et al.  Exponential lower bound for 2-query locally decodable codes via a quantum argument , 2002, STOC '03.

[28]  Luca Trevisan,et al.  Lower bounds for linear locally decodable codes and private information retrieval , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[29]  S. Mendelson,et al.  Entropy and the combinatorial dimension , 2002, math/0203275.

[30]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[31]  Jonathan Katz,et al.  On the efficiency of local decoding procedures for error-correcting codes , 2000, STOC '00.

[32]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[33]  Eyal Kushilevitz,et al.  Private information retrieval , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[34]  M. Blum,et al.  Designing programs that check their work , 1995, JACM.

[35]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[36]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[37]  H. Furstenberg,et al.  A density version of the Hales-Jewett theorem , 1991 .

[38]  Leonid A. Levin,et al.  Checking computations in polylogarithmic time , 1991, STOC '91.

[39]  Manuel Blum,et al.  Designing programs that check their work , 1989, STOC '89.

[40]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[41]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .

[42]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[43]  Ihrer Grenzgebiete,et al.  Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.