A synthesis of Tamiflu by using a barium-catalyzed asymmetric Diels-Alder-type reaction.

[1]  A. Nishida,et al.  Highly enantioselective Diels-Alder reactions of Danishefsky type dienes with electron-deficient alkenes catalyzed by Yb(III)-BINAMIDE complexes. , 2008, Journal of the American Chemical Society.

[2]  Chi‐Huey Wong,et al.  A concise and flexible synthesis of the potent anti-influenza agents tamiflu and tamiphosphor. , 2008, Angewandte Chemie.

[3]  H. Iding,et al.  New, efficient synthesis of oseltamivir phosphate (Tamiflu) via enzymatic desymmetrization of a meso-1,3-cyclohexanedicarboxylic acid diester. , 2008, The Journal of organic chemistry.

[4]  B. Trost,et al.  A concise synthesis of (-)-oseltamivir. , 2008, Angewandte Chemie.

[5]  Junichiro Yamaguchi,et al.  Synthesis of 1,9-dideoxy-pre-axinellamine. , 2008, Angewandte Chemie.

[6]  M. Kanai,et al.  Synthetic Strategies for Oseltamivir Phosphate , 2008 .

[7]  T. Hamada,et al.  Efficient short step synthesis of Corey's tamiflu intermediate. , 2008, Organic letters.

[8]  An-Suei Yang,et al.  Synthesis of tamiflu and its phosphonate congeners possessing potent anti-influenza activity. , 2007, Journal of the American Chemical Society.

[9]  S. Matsunaga,et al.  Ba-Catalyzed Direct Mannich-Type Reactions of a β,γ-Unsaturated Ester Providing β-Methyl aza-Morita−Baylis−Hillman-Type Products , 2007 .

[10]  D. Hagberg,et al.  An iron carbonyl approach to the influenza neuraminidase inhibitor oseltamivir. , 2007, Chemical communications.

[11]  T. Fukuyama,et al.  A practical synthesis of (-)-oseltamivir. , 2007, Angewandte Chemie.

[12]  M. Kanai,et al.  Catalytic enantioselective construction of tetrasubstituted carbons by self-assembled poly rare earth metal complexes. , 2007, Organic & biomolecular chemistry.

[13]  D. E. Ward,et al.  Enantioselective total synthesis of cyathin A3. , 2007, Organic letters.

[14]  K. Tiefenbacher,et al.  Eine Diels‐Alder‐Route zu (−)‐Ovalicin , 2007 .

[15]  J. Mulzer,et al.  A Diels-Alder approach to (-)-ovalicin. , 2007, Angewandte Chemie.

[16]  S. Abrecht,et al.  The synthetic-technical development of oseltamivir phosphate Tamiflu™ : A race against time , 2007 .

[17]  M. Kanai,et al.  A concise synthesis of Tamiflu: third generation route via the Diels–Alder reaction and the Curtius rearrangement , 2007 .

[18]  E. Corey,et al.  Chiral oxazaborolidine-aluminum bromide complexes are unusually powerful and effective catalysts for enantioselective Diels-Alder reactions. , 2007, Journal of the American Chemical Society.

[19]  M. Kanai,et al.  Second generation catalytic asymmetric synthesis of Tamiflu: allylic substitution route. , 2007, Organic letters.

[20]  Vittorio Farina,et al.  Tamiflu: Das Versorgungsproblem , 2006 .

[21]  V. Farina,et al.  Tamiflu: the supply problem. , 2006, Angewandte Chemie.

[22]  M. Snapper,et al.  Enantioselective silyl protection of alcohols catalysed by an amino-acid-based small molecule , 2006, Nature.

[23]  D. Nakashima,et al.  Design of chiral N-triflyl phosphoramide as a strong chiral Brønsted acid and its application to asymmetric Diels-Alder reaction. , 2006, Journal of the American Chemical Society.

[24]  S. Saito,et al.  Highly anti-selective catalytic aldol reactions of amides with aldehydes. , 2006, Journal of the American Chemical Society.

[25]  Z. Yao,et al.  Ring-closing metathesis-based synthesis of (3R,4R,5S)-4-acetylamino-5-amino-3-hydroxy- cyclohex-1-ene-carboxylic acid ethyl ester: a functionalized cycloalkene skeleton of GS4104. , 2006, The Journal of organic chemistry.

[26]  M. Kanai,et al.  Catalytic enantioselective allylation of ketoimines. , 2006, Journal of the American Chemical Society.

[27]  M. Kanai,et al.  De novo synthesis of Tamiflu via a catalytic asymmetric ring-opening of meso-aziridines with TMSN3. , 2006, Journal of the American Chemical Society.

[28]  E. Corey,et al.  A short enantioselective pathway for the synthesis of the anti-influenza neuramidase inhibitor oseltamivir from 1,3-butadiene and acrylic acid. , 2006, Journal of the American Chemical Society.

[29]  K. Luthman,et al.  Peracid dependent stereoselectivity and functional group contribution to the stereocontrol of epoxidation of (E)-alkene dipeptide isosteres , 2006 .

[30]  M. Kanai,et al.  Power of cooperativity : Lewis acid-lewis base bifunctional asymmetric catalysis , 2005 .

[31]  Martin D. Eastgate,et al.  Lewis base activation of Lewis acids: catalytic, enantioselective addition of silyl ketene acetals to aldehydes. , 2005, Journal of the American Chemical Society.

[32]  M. Kanai,et al.  Challenge toward structural complexity using asymmetric catalysis: target-oriented development of catalytic enantioselective Diels-Alder reaction. , 2004, Organic letters.

[33]  P. Harrington,et al.  The synthetic development of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu®): A challenge for synthesis & process research , 2004 .

[34]  M. Kanai,et al.  Catalytic enantioselective allylboration of ketones. , 2004, Journal of the American Chemical Society.

[35]  S. Lippard,et al.  Identification of nuclear proteins that interact with platinum-modified DNA by photoaffinity labeling. , 2004, Journal of the American Chemical Society.

[36]  V. Rawal,et al.  Enantioselective Diels-Alder reactions catalyzed by hydrogen bonding. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  H. Nemoto MAC reagents. Three-components Coupling Reaction with One Carbon Homologation , 2004 .

[38]  B. Plietker,et al.  An improved protocol for the RuO4-catalyzed dihydroxylation of olefins. , 2003, Organic letters.

[39]  Xinming Li,et al.  A three-step preparation of MAC reagents from malononitrile , 2003 .

[40]  E. J. Corey,et al.  Katalytische enantioselektive Diels-Alder-Reaktionen: Methoden, mechanistische Grundlagen, Reaktionswege und Anwendungen , 2002 .

[41]  E. Corey Catalytic enantioselective Diels--Alder reactions: methods, mechanistic fundamentals, pathways, and applications. , 2002, Angewandte Chemie.

[42]  S. Denmark,et al.  Catalytic, enantioselective aldol additions to ketones. , 2002, Journal of the American Chemical Society.

[43]  M. Kanai,et al.  Switching enantiofacial selectivities using one chiral source: catalytic enantioselective synthesis of the key intermediate for (20S)-camptothecin family by (S)-selective cyanosilylation of ketones. , 2001, Journal of the American Chemical Society.

[44]  M. Hennig,et al.  Industrial Synthesis of the Key Precursor in the Synthesis of the Anti-Influenza Drug Oseltamivir Phosphate (Ro 64-0796/002, GS-4104-02): Ethyl (3R,4S,5S)-4,5-epoxy-3-(1-ethyl-propoxy)-cyclohex-1-ene-1-carboxylate , 1999 .

[45]  Yoichi M. A. Yamada,et al.  Direct catalytic asymmetric aldol reactions promoted by a novel barium complex , 1998 .

[46]  K. Kent,et al.  Practical Total Synthesis of the Anti-Influenza Drug GS-4104 , 1998 .

[47]  E. Carreira,et al.  Apparent Catalytic Generation of Chiral Metal Enolates: Enantioselective Dienolate Additions to Aldehydes Mediated by Tol-BINAP·Cu(II) Fluoride Complexes , 1998 .

[48]  H. Bienaymé,et al.  Internally Lewis acid-catalyzed Diels-Alder cycloadditions , 1997 .

[49]  M. Shibasaki,et al.  Asymmetric Catalysis with Heterobimetallic Compounds , 1997 .

[50]  Masakatsu Shibasaki,et al.  Asymmetrische Katalyse mit Hetero‐Dimetall‐Verbindungen , 1997 .

[51]  W G Laver,et al.  Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. , 1997, Journal of the American Chemical Society.

[52]  M. Sodeoka,et al.  Catalytic Asymmetric Aldol Reaction via Chiral Pd(II) Enolate in Wet DMF , 1995 .

[53]  D. M. Ryan,et al.  Rational design of potent sialidase-based inhibitors of influenza virus replication , 1993, Nature.

[54]  Davidr . Evans,et al.  Substrate-directable chemical reactions , 1993 .

[55]  J. Chauvin,et al.  Unexpected behavior of dienol thio ethers gives versatile access to a large set of functionalized dienes , 1991 .

[56]  Yoshinori Yamamoto,et al.  Development of a new acyl anion equivalent for the preparation of masked activated esters, and their use to prepare a dipeptide , 1990 .

[57]  M. S. Cooper,et al.  Oxidation Reactions Using Magnesium Monoperphthalate: A Comparison with m-Chloroperoxybenzoic Acid , 1987 .

[58]  K. Ninomiya,et al.  Diphenylphosphoryl azide. A new convenient reagent for a modified Curtus reaction and for the peptide synthesis. , 1972, Journal of the American Chemical Society.

[59]  T. Fukuyama,et al.  New epoxidation with m-chloroperbenzoic acid at elevated temperatures , 1972 .