Structural selectivity of supported Pd nanoparticles for catalytic NH3 oxidation resolved using combined operando spectroscopy

[1]  D. Gianolio,et al.  Combined in situ XAFS/DRIFTS Studies of the Evolution of Nanoparticle Structures from Molecular Precursors. , 2017 .

[2]  S. Royer,et al.  Efficiency of Cu and Pd substitution in Fe-based perovskites to promote N2 formation during NH3 selective catalytic oxidation (NH3-SCO) , 2017 .

[3]  J. Bokhoven,et al.  In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD , 2017 .

[4]  C. Catlow,et al.  Tandem site and size controlled Pd nanoparticles for the directed hydrogenation of furfural , 2017 .

[5]  Huan Wang,et al.  Complete Assignment of the Infrared Spectrum of the Gas-Phase Protonated Ammonia Dimer. , 2016, The journal of physical chemistry. A.

[6]  R. Bourne,et al.  X-ray spectroscopy for chemistry in the 2-4 keV energy regime at the XMaS beamline: ionic liquids, Rh and Pd catalysts in gas and liquid environments, and Cl contamination in γ-Al2O3. , 2015, Journal of synchrotron radiation.

[7]  L. Chmielarz,et al.  Advances in selective catalytic oxidation of ammonia to dinitrogen: a review , 2015 .

[8]  A. Beale,et al.  Restructuring of AuPd Nanoparticles Studied by a Combined XAFS/DRIFTS Approach , 2015 .

[9]  J. Gustafson,et al.  Chemistry of Supported Palladium Nanoparticles during Methane Oxidation , 2015 .

[10]  C. Descorme,et al.  Catalytic wet air oxidation of ammonia over supported noble metals , 2015 .

[11]  S. Hong,et al.  Promotional effect of vanadium on the selective catalytic oxidation of NH3 to N2 over Ce/V/TiO2 catalyst , 2015 .

[12]  K. Góra-Marek,et al.  Zeolite Y modified with palladium as effective catalyst for selective catalytic oxidation of ammonia to nitrogen , 2014 .

[13]  J. Keum,et al.  Evidence for the Formation of Nitrogen-Rich Platinum and Palladium Nitride Nanoparticles , 2013 .

[14]  Hong He,et al.  Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx , 2013 .

[15]  C. Dujardin,et al.  Operando infrared spectroscopy of the reduction of NO by H2 over rhodium based catalysts , 2012 .

[16]  Thomas Huthwelker,et al.  The irreversible formation of palladium carbide during hydrogenation of 1-pentyne over silica-supported palladium nanoparticles: in situ Pd K and L3 edge XAS. , 2012, Physical chemistry chemical physics : PCCP.

[17]  M. Janousch,et al.  The roles of carbide and hydride in oxide-supported palladium nanoparticles for alkyne hydrogenation , 2011 .

[18]  A. Frenkel,et al.  Combined in situ X-ray absorption and diffuse reflectance infrared spectroscopy: An attractive tool for catalytic investigations , 2011 .

[19]  C. J. Weststrate,et al.  Ammonia oxidation on Ir(1 1 1): Why Ir is more selective to N2 than Pt , 2010 .

[20]  Chang‐Mao Hung Characterization and performance of Pt-Pd-Rh cordierite monolith catalyst for selectivity catalytic oxidation of ammonia. , 2010, Journal of hazardous materials.

[21]  A. Beale,et al.  EXAFS as a tool to interrogate the size and shape of mono and bimetallic catalyst nanoparticles. , 2010, Physical chemistry chemical physics : PCCP.

[22]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[23]  Hong He,et al.  Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al2O3 , 2009 .

[24]  J. Bokhoven,et al.  Particle Size Effect of Hydride Formation and Surface Hydrogen Adsorption of Nanosized Palladium Catalysts: L3 Edge vs K Edge X-ray Absorption Spectroscopy , 2009 .

[25]  Hong-Qing He,et al.  Experimental and theoretical studies of surface nitrate species on Ag/Al2O3 using DRIFTS and DFT. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[26]  Chih‐Hao Lee,et al.  Size-dependent lattice structure of palladium studied by x-ray absorption spectroscopy , 2007 .

[27]  H. Freund,et al.  Acetylene and Ethylene Hydrogenation on Alumina Supported Pd-Ag Model Catalysts , 2006 .

[28]  R. Dziembaj,et al.  Selective oxidation of ammonia to nitrogen on transition metal containing mixed metal oxides , 2005 .

[29]  R. T. Yang,et al.  Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts , 2005 .

[30]  R. T. Yang,et al.  Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites prepared by sublimation of FeCl3 , 2004 .

[31]  W. Schwieger,et al.  N2O decomposition over iron modified zeolites ZSM-5 , 2004 .

[32]  A. V. Matveev,et al.  Selective oxidation of ammonia over Ru(0 0 0 1) , 2004 .

[33]  E. Hensen,et al.  Low-Temperature Ammonia Oxidation Over Pt/γ-Alumina: The Influence of the Alumina Support , 2003 .

[34]  M. Vannice,et al.  Adsorption of NO on promoted Ag/α-Al2O3 catalysts , 2003 .

[35]  M. Anpo,et al.  Interaction of N2O with Ag+ ion-exchanged zeolites: an FT-IR spectroscopy and quantum chemical ab initio and DFT studies , 2003 .

[36]  B. E. Nieuwenhuys,et al.  Selective oxidation of ammonia over Ir(5 1 0). Comparison with Ir(1 1 0) , 2003 .

[37]  Van Santen,et al.  Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts , 2003 .

[38]  D. Duprez,et al.  Catalytic wet air oxidation of ammonia over M/CeO2 catalysts in the treatment of nitrogen-containing pollutants , 2002 .

[39]  R. Burch,et al.  The Nature of the Active Metal Surface of Catalysts for the Clean Combustion of Biogas Containing Ammonia , 2001 .

[40]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[41]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[42]  Van Santen,et al.  Selective Low Temperature NH3 Oxidation to N2 on Copper-Based Catalysts , 1999 .

[43]  V. Grassian,et al.  Transmission FT-IR and Knudsen Cell Study of the Heterogeneous Reactivity of Gaseous Nitrogen Dioxide on Mineral Oxide Particles , 1999 .

[44]  M. Weinert,et al.  XANES study of hydrogen incorporation in a Pd-capped Nb thin film , 1998 .

[45]  J. Armor,et al.  Selective NH3 oxidation to N2 in a wet stream , 1997 .

[46]  G. Busca,et al.  An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides , 1997 .

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[50]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[51]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[52]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[53]  A. Bianconi,et al.  Relevant role of hydrogen atoms in the XANES of Pd hydride: Evidence of hydrogen induced unoccupied states , 1993 .

[54]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[55]  C. Frazer,et al.  in The Catalytic Oxidation of Ammonia , 2020 .

[56]  L. Nossova,et al.  Influence of Supports on Pd Catalysts for the Selective Catalytic Reduction of NOx with H2 and CO , 2015, Emission Control Science and Technology.

[57]  R. Bourne,et al.  X-ray spectroscopy for chemistry in the 2-4 keV energy regime at the XMaS beamline: ionic liquids, Rh and Pd catalysts in gas and liquid environments, and Cl contamination in [gamma]-Al2O3 , 2015 .

[58]  Hong He,et al.  The role of silver species on Ag/Al2O3 catalysts for the selective catalytic oxidation of ammonia to nitrogen , 2009 .

[59]  Mayas Singh.,et al.  Study of surface energy and surface relaxation of Ni(100), Ni(110) and Ni(111) using Vienna ab-initio simulation package (VASP). , 2009 .

[60]  E. Hensena,et al.  Low-temperature ammonia oxidation over Pt/g-alumina : the influence of the alumina support , 2003 .

[61]  R. T. Yang,et al.  Superior ion-exchanged ZSM-5 catalysts for selective catalytic oxidation of ammonia to nitrogen , 2000 .

[62]  N. I. Il’chenko,et al.  Catalytic Oxidation of Ammonia , 1976 .

[63]  J. Galloway A Review of the , 1901 .