Effect of contact between electrode and current collector on the performance of solid oxide fuel cells
暂无分享,去创建一个
San Ping Jiang | S. Jiang | J. Love | J. G Love | L. Apăteanu | L. Apateanu | S. Jiang
[1] D. Dees,et al. Conductivity of porous Ni/ZrO/sub 2/-Y/sub 2/O/sub 3/ cermets , 1987 .
[2] S. Jiang,et al. Electrode behaviour at (La,Sr)MnO3/Y2O3–ZrO2 interface by electrochemical impedance spectroscopy , 2002 .
[3] L. Gauckler,et al. Microstructure‐Property Relations of Solid Oxide Fuel Cell Cathodes and Current Collectors Cathodic Polarization and Ohmic Resistance , 1996 .
[4] Tohru Yamamoto,et al. Configurational and Electrical Behavior of Ni‐YSZ Cermet with Novel Microstructure for Solid Oxide Fuel Cell Anodes , 1997 .
[5] S. Jiang,et al. Hydrogen Oxidation at the Nickel and Platinum Electrodes on Yttria‐Tetragonal Zirconia Electrolyte , 1997 .
[6] Mogens Bjerg Mogensen,et al. Structure/Performance Relations for Ni/Yttria‐Stabilized Zirconia Anodes for Solid Oxide Fuel Cells , 2000 .
[7] U. Flesch,et al. Improved contacting by the use of silver in solid oxide fuel cells up to an operating temperature of 800 °C , 2001 .
[8] Tohru Kato,et al. Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3 − x /Yttria‐Stabilized Zirconia Interface by Secondary‐Ion Mass Spectrometry , 1998 .
[9] R. Donelson,et al. Electrode supported solid oxide fuel cells: Electrolyte films prepared by DC magnetron sputtering , 1997 .
[10] Mogens Bjerg Mogensen,et al. Oxidation of hydrogen on Ni/yttria-stabilized zirconia cermet anodes , 1997 .
[11] F. Berkel,et al. Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and I–V characteristics , 1994 .
[12] T. Pagnier,et al. Oxygen Reduction at La0.5Sr0.5MnO3 Thin Film/Yttria‐Stabilized Zirconia Interface Studied by Impedance Spectroscopy , 1994 .
[13] S. Jiang,et al. An electrode kinetics study of H2 oxidation on Ni/Y2O3–ZrO2 cermet electrode of the solid oxide fuel cell , 1999 .
[14] M. Miyayama,et al. Changes in the Phases and Electrical Conduction Properties of ( La1 − x Sr x ) 1 − y MnO3 − δ , 1991 .
[15] Meilin Liu,et al. Significance of interfaces in solid-state cells with porous electrodes of mixed ionic–electronic conductors , 1998 .
[16] R. C. Weast. CRC Handbook of Chemistry and Physics , 1973 .
[17] S. Jiang,et al. Origin of the initial polarization behavior of Sr-doped LaMnO3 for O2 reduction in solid oxide fuel cells , 2001 .
[18] S. Jiang,et al. H2 oxidation on Ni/Y-TZP cermet electrodes – a comparison of electrode behaviour by GCI and EIS techniques , 1999 .
[19] D. Ivey,et al. A new vapor deposition method to form composite anodes for solid oxide fuel cells , 2004 .
[20] D. Perednis,et al. Fabrication of thin electrolytes for second-generation solid oxide fuel cells , 2000 .
[21] Philippe Vernoux,et al. Electrochemical properties of Ni-YSZ cermet in solid oxide fuel cells , 2000 .
[22] S. Badwal,et al. Evaluation of commercial zirconia powders forsolid oxide fuel cells , 1994 .
[23] Wolfgang Göpel,et al. Active Reaction Sites for Oxygen Reduction in La0.9Sr0.1,MnO3/YSZ Electrodes , 1995 .
[24] Meilin Liu,et al. Interfacial studies of solid-state cells based on electrolytes of mixed ionic-electronic conductors , 1998 .
[25] H. Bouwmeester,et al. Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia I. Three‐Phase Boundary Area , 1997 .