Deubiquitylating enzyme USP9x regulates hippo pathway activity by controlling angiomotin protein turnover

[1]  Xiaocan Guo,et al.  YAP activates the Hippo pathway in a negative feedback loop , 2017, Cell Research.

[2]  D. Lim,et al.  Role of Angiomotin‐like 2 mono‐ubiquitination on YAP inhibition , 2016, EMBO reports.

[3]  Min Wang,et al.  Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway , 2015, Oncotarget.

[4]  M. Karin,et al.  A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis , 2015, Genes & development.

[5]  Antonio Marchetti,et al.  The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies , 2015, Nature Genetics.

[6]  Kun-Liang Guan,et al.  The emerging roles of YAP and TAZ in cancer , 2015, Nature Reviews Cancer.

[7]  K. Guan,et al.  Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating the Hippo pathway , 2014, Oncogene.

[8]  S. Cohen,et al.  Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover , 2014, The EMBO journal.

[9]  S. Cohen,et al.  Viral small T oncoproteins transform cells by alleviating hippo-pathway-mediated inhibition of the YAP proto-oncogene. , 2014, Cell reports.

[10]  Shan Jiang,et al.  Yap1 Activation Enables Bypass of Oncogenic Kras Addiction in Pancreatic Cancer , 2014, Cell.

[11]  Joseph Rosenbluh,et al.  KRAS and YAP1 Converge to Regulate EMT and Tumor Survival , 2014, Cell.

[12]  Peng Qiu,et al.  TCGA-Assembler: open-source software for retrieving and processing TCGA data , 2014, Nature Methods.

[13]  G. Tonon,et al.  RESCUE OF HIPPO CO-ACTIVATOR YAP1 TRIGGERS DNA DAMAGE-INDUCED APOPTOSIS IN HEMATOLOGICAL CANCERS , 2014, Nature Medicine.

[14]  G. Halder,et al.  The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment , 2013, Nature Reviews Drug Discovery.

[15]  W. Hong,et al.  Actin-binding and Cell Proliferation Activities of Angiomotin Family Members Are Regulated by Hippo Pathway-mediated Phosphorylation* , 2013, The Journal of Biological Chemistry.

[16]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[17]  Yiqiang Zhao,et al.  Phosphorylation of Angiomotin by Lats1/2 Kinases Inhibits F-actin Binding, Cell Migration, and Angiogenesis* , 2013, The Journal of Biological Chemistry.

[18]  A. Brunetti,et al.  Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth , 2013, Nature Communications.

[19]  M. Goebl,et al.  Amot130 Adapts Atrophin-1 Interacting Protein 4 to Inhibit Yes-associated Protein Signaling and Cell Growth* , 2013, The Journal of Biological Chemistry.

[20]  F. Camargo,et al.  The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. , 2013, Current opinion in cell biology.

[21]  David M. Thomas,et al.  The Hippo pathway and human cancer , 2013, Nature Reviews Cancer.

[22]  M. Kirschner,et al.  Deubiquitinase FAM/USP9X Interacts with the E3 Ubiquitin Ligase SMURF1 Protein and Protects It from Ligase Activity-dependent Self-degradation , 2012, The Journal of Biological Chemistry.

[23]  Lincoln D. Stein,et al.  Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes , 2012, Nature.

[24]  Chunaram Choudhary,et al.  Proteomic Analyses Reveal Divergent Ubiquitylation Site Patterns in Murine Tissues* , 2012, Molecular & Cellular Proteomics.

[25]  Jun O. Liu,et al.  Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. , 2012, Genes & development.

[26]  Jun O. Liu,et al.  The Nedd4-like ubiquitin E3 ligases target angiomotin/p130 to ubiquitin-dependent degradation. , 2012, The Biochemical journal.

[27]  Richard J. Lavallee,et al.  Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. , 2012, Journal of proteome research.

[28]  G. Kristiansen,et al.  The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma , 2012, Nature.

[29]  J. Baselga,et al.  USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma , 2012, Nature Medicine.

[30]  J. Yates,et al.  Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor , 2011, Molecular biology of the cell.

[31]  Sebastian A. Wagner,et al.  A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles* , 2011, Molecular & Cellular Proteomics.

[32]  Nicola Elvassore,et al.  Role of YAP/TAZ in mechanotransduction , 2011, Nature.

[33]  R. Aqeilan,et al.  Negative regulation of the Hippo pathway by E3 ubiquitin ligase ITCH is sufficient to promote tumorigenicity. , 2011, Cancer research.

[34]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[35]  A. Pobbati,et al.  Hippo Pathway-independent Restriction of TAZ and YAP by Angiomotin* , 2011, The Journal of Biological Chemistry.

[36]  Junjie Chen,et al.  Angiomotin-like Proteins Associate with and Negatively Regulate YAP1* , 2010, The Journal of Biological Chemistry.

[37]  A. Bowcock,et al.  Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas , 2010, Science.

[38]  N. Donato,et al.  Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. , 2010, Cancer research.

[39]  Zhengyu Zha,et al.  The Hippo Tumor Pathway Promotes TAZ Degradation by Phosphorylating a Phosphodegron and Recruiting the SCFβ-TrCP E3 Ligase* , 2010, The Journal of Biological Chemistry.

[40]  Li Li,et al.  The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. , 2010, Genes & development.

[41]  F. Bazan,et al.  Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival , 2010, Nature.

[42]  H. Ichijo,et al.  Ubiquitin-like sequence in ASK1 plays critical roles in the recognition and stabilization by USP9X and oxidative stress-induced cell death. , 2009, Molecular cell.

[43]  Jianmin Zhang,et al.  YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway , 2009, Nature Cell Biology.

[44]  Leonardo Morsut,et al.  FAM/USP9x, a Deubiquitinating Enzyme Essential for TGFβ Signaling, Controls Smad4 Monoubiquitination , 2009, Cell.

[45]  K. Guan,et al.  The Hippo-YAP pathway: new connections between regulation of organ size and cancer. , 2008, Current opinion in cell biology.

[46]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[47]  Li Li,et al.  Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. , 2007, Genes & development.

[48]  M. Mann,et al.  Higher-energy C-trap dissociation for peptide modification analysis , 2007, Nature Methods.

[49]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[50]  P. McPherson,et al.  The Ubiquitin Ligase Itch Is Auto-ubiquitylated in Vivo and in Vitro but Is Protected from Degradation by Interacting with the Deubiquitylating Enzyme FAM/USP9X* , 2006, Journal of Biological Chemistry.

[51]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[52]  Jianmin Zhang,et al.  Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon , 2006, Proceedings of the National Academy of Sciences.

[53]  Mariette Schrier,et al.  A Genetic Screen Implicates miRNA-372 and miRNA-373 As Oncogenes in Testicular Germ Cell Tumors , 2006, Cell.

[54]  A. Rao Faculty Opinions recommendation of Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. , 2003 .

[55]  René Bernards,et al.  Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB , 2003, Nature.

[56]  Matthias Mann,et al.  Mass spectrometric-based approaches in quantitative proteomics. , 2003, Methods.

[57]  R. Bernards,et al.  A System for Stable Expression of Short Interfering RNAs in Mammalian Cells , 2002, Science.

[58]  A. Ashworth,et al.  Identification of the familial cylindromatosis tumour-suppressor gene , 2000, Nature Genetics.

[59]  G. Kristiansen,et al.  The deubiquitinase USP 9 X suppresses pancreatic ductal adenocarcinoma , 2012 .

[60]  K. Guan,et al.  Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. , 2011, Genes & development.

[61]  K. Guan,et al.  A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). , 2010, Genes & development.

[62]  Leonardo Morsut,et al.  FAM / USP 9 x , a Deubiquitinating Enzyme Essential for TGF b Signaling , Controls Smad 4 Monoubiquitination , 2009 .